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ABSTRACT

Differentiable Wavetable Synthesis (DWTS) is a technique
for neural audio synthesis which learns a dictionary of one-
period waveforms i.e. wavetables, through end-to-end train-
ing. We achieve high-fidelity audio synthesis with as little as
10 to 20 wavetables and demonstrate how a data-driven dic-
tionary of waveforms opens up unprecedented one-shot learn-
ing paradigms on short audio clips. Notably, we show audio
manipulations, such as high quality pitch-shifting, using only
a few seconds of input audio. Lastly, we investigate perfor-
mance gains from using learned wavetables for realtime and
interactive audio synthesis.

Index Terms— Differentiable Digital Signal Processing,
Wavetable Synthesis, Differentiable Dictionaries

1. INTRODUCTION

Although machine learning (ML) has revolutionized modern
audio synthesis with unprecedented progress [, 12} 3]]; fast, ro-
bust and realtime neural audio synthesis remains a challenge.
Purely deep audio models require significant parallelization
[4] or custom kernels [3] for fast performance. Recent tech-
niques fusing differentiable signal processing with deep neu-
ral networks (DNN) [5] have enabled efficient, interpretable
and real-time use cases [6} [7] with minimal additional engi-
neering.

Wavetable synthesis (WTS) is well-suited to realtime
synthesis of periodic and quasi-periodic signals. Real-world
objects that generate sound often exhibit physics that are well
described by harmonic oscillations. These include vibrating
strings, membranes, hollow pipes and human vocal chords
[8]. By using lookup tables composed of single-period wave-
forms, WTS can be as general as additive synthesis whilst
requiring less realtime computation [9]. We demonstrate
three key contributions to neural audio synthesis using this
approach: high fidelity synthesis, wavetables transferrable to
other tasks and an order of magnitude reduction in computa-
tional complexity.

* Work performed while a PhD intern at ByteDance. Corresponding
Email: siyuanshan@cs.unc.edu

2. RELATED WORK

Wavetable Synthesis (WTS): Wavetable synthesis generates
audio from a collection of static, single-period waveforms
called “wavetables”, that each capture a unique harmonic
spectrum. Wavetables are typically 256 - 4096 samples in
length; a collection can contain a few to several hundred
wavetables depending on use case. Periodic waveforms are
synthesized by indexing into the wavetables as a lookup ta-
ble and interpolating between neighbouring samples. WTS
was historically used on early hardware synthesizers where
memory and computing power were limited. Today, WTS
continues to underpin commercial sound design and synthe-
sis tools due to its ability to generate a wide variety of timbres
coupled with efficient performance. Wavetables are normally
hand-crafted or extracted programatically from audio spectra
[©OL10]. In this work, we learn data-driven wavetables.

Differentiable dictionaries: ML models can be equipped
with differentiable memory or dictionaries that are learned
end-to-end with model parameters. Models can write to ex-
ternal memory to record and lookup changes in state [11,[12].
Discriminative models can learn a differentiable dictionary
for improved classification during inference [[13]. Here, we
formulate wavetables as a differentiable dictionary optimized
jointly with model parameters.

Differentiable Digital Signal Processing: DDSP [3] de-
scribes a family of techniques utilizing strong inductive biases
from DSP combined with modern ML. Successful applica-
tions include audio synthesis [3]], pitch detection [14]], artifi-
cial reverberations [[15] and IIR filters [7]. Building on these
works, we add WTS as a new technique for generative audio
tasks.

3. METHODS

3.1. Differentiable Wavetable Synthesizer (DWTS)

Wavetable as learnable dictionary: We define a learnable
dictionary D = {w;}¥ where N is the number of wavetables
and w; € R denotes a one-cycle wavetable of length L.
When a wavetable begins and ends on different values, this
discontinuity causes synthesis artefacts. We append w;[L +
1] to w; and set w;[L + 1] = w,;[0]. A wavetable w; now
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Fig. 1. Learned wavetables ordered with highest average attention weights appearing first (normal English reading order).
Wavetables of key harmonics are highlighted: f; (red), f1 (yellow), fo (purple) and f3 (green). The remaining wavetables are
data-driven combinations of higher harmonics. The first two wavetables appear to be silence.

contains L + 1 elements with L learnable parameters. During
training, we learn D using gradient descent jointly with other
parameters. During inference, D is frozen and treated as a
traditional, static collection of wavetables.

Time-varying attention: By sequentially morphing be-
tween wavetables, timbre can be changed over time [10]. In-
spired by [16, [17] we generalize morphing as a time-varying
linear attention over all wavetablesi.e. ¢, cl ...l where N
and T are number of wavetables and timesteps respectively
with constraints Zi\; c¢i(n) = 1and ¢;(n) > 0.

Phase: Our model “draws” wavetables directly in the
time domain. Phase relationships within and across waveta-
bles can be controlled without needing to coherently manage
independent magnitudes and phases in the complex frequency
domain. This contrasts with [5]], where the initial phase of all
harmonic components are fixed at 0.

Synthesis: At the heart of WTS is a phase accumulator
[9]. Given an input sequence of time-varying fy(n) over dis-
crete ti~me steps n, we can compute the instantaneous modulo
phase ¢ by integrating fo(n):

n

qz(n) =2 Z fo(n) mod 27.

m=0

ey

#(n) is normalized into a fractional index j(n) = %g{)(n)
We synthesize the signal x(n) by linearly combining waveta-
bles w; in D via:

2(n) = A(m) Y ciln) - ®(w,, j(n), ),

i=1

@

where A(n) is a time-varying amplitude controlling the
signal’s overall amplitude and c¢; denotes the time-varying at-
tention on w;. A(n) and ¢;(n) are constrained positive via a
sigmoid. The function ®(w;, 7 k) is a fractional indexing op-
erator that returns the (})—th element of the vector w; by using
an interpolation kernel # to approximate w;[;] when j is non
integer. Whilst more sophisticated interpolation kernels ex-

ist (cubic, spline etc.), we use linear interpolation for optimal
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Fig. 2. Spectrograms of two target samples and their corre-
sponding reconstruction.

realtime performance. For readers unfamiliar with fractional
indexing, please refer to the online supplement.

Initialization: w; is randomly initialized with a zero-
centered Gaussian distribution A/ (0, o). We empirically find
using a small o = 0.01 improves training.

Antialiasing: At high fy, the frequencies of upper har-
monics in a wavetable can be above Nyquist and must be
removed before lookup to prevent aliasing. This filter also
prevents high frequency components present in the Gaussian
noise initialization from causing aliasing at the start of train-
ing. Without this frequency-dependent anti-aliasing filter, we
found aliasing artefacts alone prevented meaningful learning.

4. EXPERIMENTS

We benchmark against the original DDSP autoencoder [J],
where a DNN controls an additive synth and filtered noise
synth to produce harmonic and non-harmonic components
of audio respectively. We replace the additive synth with
our wavetable synth and use an identical filtered noise synth.
Noise generation is a stochastic process that must be mod-
elled separately. Like [3]], we omit the optional reverb module
when training on the NSynth dataset.

Model: We adopt an identical input tuple (fo(n),1(n), z(n))
[5]. Fundamental frequency fo(n) in equation is extracted
by a pretrained CREPE model [18]] with fixed weights. Loud-



Table 1. Reconstruction error comparison on the Nsynth dataset. Compared to the SOTA additive synthesis approach [3]], our
wavetable synthesis approach achieves comparable or lower errors.

DDSP Additive Synthesis 5

Wavetable Synthesis (Ours) with N=

10 20 100

0.5834 £+ 0.0035

‘0.6448 £ 0.0041 0.5989 £ 0.0042 0.5712 £ 0.0037 0.5756 + 0.0034

ness [(n) is an A-weighted log-magnitude extracted deter-
ministically from audio. The residual embedding z(n) is
extracted from MFCC’s via an encoder. For direct compari-
son, we use identical encoder and decoder architectures with
approximately 7M parameters in total.

Unlike the autoencoder in [3]], our setup contains an addi-
tional NV x L learnable parameters in the wavetable dictionary
D during training. During inference however, the wavetables
are frozen and the parameter counts near-identical.

Loss: We use a multi-scale spectral loss similar to [S]]:

Lreconstruction = Z HSz - §i||17 (3)

where S; and S; respectively denote magnitude spectrums
of target and synthesized audio, and ¢ denotes different FFT
sizes. We found the log term || log S; —log S;||; caused train-
ing instabilities and excluded it. This modification did not
influence the quality of synthesized audio.

Dataset We use the same subset of the NSynth dataset
in [5, 119, 20], containing 70,000 mono 16kHz samples each
4 seconds long. The examples comprise mostly of strings,
brass, woodwinds and mallets. At 16kHz, a wavetable length
L = 512 is enough to represent all harmonics at the lowest
fundamental frequency of interest (20Hz).

5. RESULTS

5.1. Reconstruction Quality of DWTS

Table[T]reports the reconstruction error of the SOTA additive-
based autoencoder from [5] and the proposed DWTS-based
autoencoder. We vary the number of wavetables N =
5,10, 20, 100. Our approach achieves the lowest reconstruc-
tion error of 0.5712 using only 20 wavetables. At the expense
of a small reduction in quality compared to the baseline, NV
can be low as 10. Fig[2]shows spectrograms of two samples
and their matching reconstructions using wavetables. We
encourage readers to listen to the online supplementﬂ
Crucially, the wavetables in D form an alternative, com-
pact set of basis vectors spanning an L-dimensional space ex-
tracted directly from the data. When IV is very small at 5,
reconstruction suffers due to an insufficient number of bases.
10-20 wavetables strike an optimal balance for the NSynth
dataset. Wavetables reduce the number of control dimensions

Uhttps://lamtharnhantrakul.github.io/diffwts.github.io/
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Fig. 3. Visualization of the time-varying attention weights of
5 samples using 20 wavetables.

by an order of magnitude compared to the 100 sinusoids in an
additive synth [S]. More importantly, the extracted waveta-
bles are an explicit dictionary that are portable to other tasks.
We show this property in later sections.

5.2. Visualizing Wavetables

Fig [T] shows learned wavetables from the NSynth dataset
when N = 20. Despite being initialized with noise, the
learned wavetables are smooth and diverse in shape. They
also match the physics of NSynth sounds. In acoustic instru-
ments, energy is focused on lower frequencies, particularly
the first few harmonics, compared to higher harmonics [21].
Wavetables in Fig [T] are ordered with highest average atten-
tion weights appearing first. The wavetable highlighted in red
is a phase-shifted sinusoid of one period i.e. the fundamental
frequency fy. Other key partials f1, fo and f3 are highlighted
in yellow, purple and green. The remaining wavetables are
data-driven combinations of higher harmonics, compactly
summarizing in a single wavetable entry what would have
taken several sinusoidal components in an additive synth [S]]
to represent. Fig [3] shows the attention weights over time
for five audio samples. The attention visibly shifts across
wavetables to output the desired spectrum.

The asymmetric wavetables are the result of complex
behavior in magnitude and phase. We found phase-locking
wavetables to start and end at O deteriorated performance.
It suggests the model takes advantage of phase relationships
within and between wavetables. This precise control of
wavetable phase will be particularly valuable in future work
exploring synthesis of stereo and binaural audio [22].
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Fig. 4. Spectrograms of original audio (a) and synthesized samples from an input fy(n) pitch shifted down by an octave (b-e)

5.3. One shot learning and audio manipulations

In domains such as Neural Machine Translation (NMT), word
embeddings [23] extracted from end-to-end language learning
are useful for other language tasks. Analogously, we reason
our data-driven wavetables should be useful in other scenarios
like one-shot learning and data-efficient extrapolation. Un-
like an implicit multi-dimensional vector, wavetables are an
explicit and interpretable representation.

One-shot setup: Given only a single 4 second passage
of saxophone from the URMP dataset [24]], we train a new
autoencoder model initialized with pretrained wavetables
from Fig[I| (DWTS Pretrain). This model only outputs time-
varying attention weights, since the wavetables are now a
fixed dictionary lookup. We compare against three base-
lines: (1) additive-synth autoencoder trained from scratch
(Add Scratch), (2) finetuning an additive-synth autoencoder
pretrained on Nsynth (Add Pretrain) and (3) Wavetable-synth
autoencoder trained from scratch (DWTS Scratch).

Pitch extrapolation: While all models achieve identical
high quality one-shot reconstructions of the saxophone seg-
ment, only DWTS Pretrain is robust to overfitting during ex-
trapolation. Fig [] shows how all baselines exhibit high fre-
quency artefacts when input fq(n) is shifted. DWTS+ Pretrain
remains artefact free even at extreme shifts, such as 3 octaves
below the original sample.

We repeat with a 4 second piano passage. A piano is chal-
lenging to model due to the presence of both many harmonics
and percussive hammer hits [21]. We also compare against
the Librosa library pitch shift function based on traditional
DSP [25]. When resynthesizing the segment 3 octaves down,
DWTS Pretrain is the only method that preserves the ham-
mer’s percussive impact and independently shifts harmonic
components. Librosa pitch shift loses the transient impact
completely.

Connection to PSOLA: In this scenario, we hypothesize
DWTS Pretrain approaches an optimal Pitch Synchronous
Overlap and Add (PSOLA) algorithm [26]. PSOLA windows
a single cycle of the original waveform in the time domain,
re-patching and overlapping these windows at the new pitch.

Imperfections in this windowing and overlapping process
can cause artefacts. DWTS Pretrain guarantees single-cycle
waveforms in D, where re-pitching is trivially achieved using
a slower phase accumulator ¢(n) reading through a wavetable
w;. This opens up applications like data-efficient neural sam-
pling, pitch correction and efficient polyphony using multiple
phase accumulators. We leave wavetables extracted from
speech or singing voice for future work.

5.4. Computational Complexity

Realtime performance is determined by many factors includ-
ing algorithmic complexity, low level optimizations, target
hardware and the C++ ML framework used for matrix op-
erations. Here, we consider only the key difference between
the additive synth-based pipeline in [S]], which already runs
realtime [6], and our new approach.

A.) Additive: a bank of 100 sinusoids where harmonic
coefficients are updated at 250 frames per second (FPS) [3]]

B.) DWTS: 10 pre-learned wavetables where wavetable
weights are also updated at 250 FPS.

The remaining elements of each approach are assumed
identical in specification and performance. There are two
clear areas of improvement with our new method. Firstly,
DWTS requires only ten interpolated wavetable read opera-
tions per sample, compared to the 100 required for Additive.
Secondly, both pipelines require frame-wise linear smooth-
ing of control data to avoid unwanted artefacts in the synthe-
sized signals. Additive requires all 100 sinusoidal amplitude
coefficients to be smoothed per sample, whereas DWTS re-
quires smoothing on only 10. We confirm this on a 2.6GHz
2019 Macbook Pro. Over 10k trials, Additive takes on aver-
age 251.32ms to generate all 250 frames in 1 second of audio,
whereas DWTS takes only 20.19ms.

6. CONCLUSION

In this paper, we presented a differentiable wavetable syn-
thesizer capable of high fidelity neural audio synthesis. We
demonstrate how explicit and learnable wavetables offer



many advantages including robust one-shot learning and an
order of magnitude reduction in computational complexity.
The approach opens up applications such as data-efficient
neural audio sampling and pitch-shifting.
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