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Speech separation can be formulated as learning to estimate a time-frequency mask from acoustic

features extracted from noisy speech. For supervised speech separation, generalization to unseen

noises and unseen speakers is a critical issue. Although deep neural networks (DNNs) have been

successful in noise-independent speech separation, DNNs are limited in modeling a large number

of speakers. To improve speaker generalization, a separation model based on long short-term mem-

ory (LSTM) is proposed, which naturally accounts for temporal dynamics of speech. Systematic

evaluation shows that the proposed model substantially outperforms a DNN-based model on unseen

speakers and unseen noises in terms of objective speech intelligibility. Analyzing LSTM internal

representations reveals that LSTM captures long-term speech contexts. It is also found that the

LSTM model is more advantageous for low-latency speech separation and it, without future frames,

performs better than the DNN model with future frames. The proposed model represents an effec-

tive approach for speaker- and noise-independent speech separation.
VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4986931]
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I. INTRODUCTION

Speech separation is the task of separating target speech

from background noise. It has many applications, such as

hearing aids and robust automatic speech recognition (ASR).

Speech separation at low signal-to-noise ratios (SNRs) is

very challenging, especially from single-microphone record-

ings. The task can be formulated as a supervised learning

problem where a time-frequency (T-F) mask is estimated

from noisy speech. A T-F mask preserves speech-dominant

parts and suppresses noise-dominant parts in a T-F represen-

tation of noisy speech. Unlike speech enhancement

(Ephraim and Malah, 1984; Erkelens et al., 2007; Loizou,

2013), supervised separation does not make assumptions

about the statistical distribution of underlying speech or

noise signals, and represents a data-driven strategy to deal

with background noises.

Supervised separation typically learns a mapping from

acoustic features of noisy speech to a masking function. The

ideal binary mask (IBM), which labels a T-F unit as either

speech-dominant or noise-dominant, is a commonly used

masking function (Wang, 2005). Alternatively, a soft label

on a T-F unit leads to the definition of the ideal ratio mask

(IRM) (Srinivasan et al., 2006; Wang et al., 2014;

Hummersone et al., 2014):

IRM t; fð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S t; fð Þ2

S t; fð Þ2 þ N t; fð Þ2

s
; (1)

where Sðt; f Þ2 and Nðt; f Þ2 denote speech energy and noise

energy within a T-F unit at time t and frequency f, respec-

tively. A recent study has shown that ratio masking leads to

better speech quality than binary masking (Wang et al.,
2014). Deep neural networks (DNNs) have been very

successful in supervised separation (Wang and Wang, 2013;

Xu et al., 2014; Huang et al., 2015). Recent listening tests

demonstrate that IRM estimation using a DNN substantially

improves speech intelligibility of hearing-impaired and

normal hearing listeners (Healy et al., 2013; Chen et al.,
2016b). In this study, we use the IRM as the learning target

of supervised separation.

For supervised learning tasks, generalizing to unseen

conditions is a critical issue. Noise generalization and

speaker generalization are two important aspects for super-

vised speech separation. The first aspect has been investi-

gated in recent studies. With noise expansion through

frequency perturbation, a model trained on one noisy type

performs well with unseen segments of the same noise type

(Chen et al., 2016a; Healy et al., 2015). A DNN-based IRM

estimator, when trained with a large variety of noises but a

fixed speaker, generalizes to unseen noises and unseen

SNRs, and leads to clear speech intelligibility improvement

(Chen et al., 2016b). However, it remains unknown how

well such a model generalizes to unseen speakers and unseen

noises at the same time.

In this study, we investigate speaker generalization of

noise-independent models. To illustrate the problem, we first

evaluate a speaker-dependent DNN on both seen and unseen

speakers. A five-hidden-layer DNN is trained on 320 000

mixtures created using 67 utterances of a female speaker and

10 000 noises. A test set is created from another 25 utteran-

ces of the same female speaker and an unseen babble noise

at �5 dB SNR. Then, we create another two test sets with an
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unseen female speaker and an unseen male speaker. Figure 1

shows the performance of the speaker-dependent DNN on

seen and unseen speakers in terms of the short-time objective

intelligibility (STOI) score (Taal et al., 2011), which com-

pares the envelopes of separated speech and clean speech

and computes a score between 0% and 100%. A higher

STOI score indicates higher objective speech intelligibility.

As expected, the speaker-dependent DNN significantly

improves STOI for the seen speaker. However, for both

unseen speakers, the STOI scores of processed speech do not

improve over those of unprocessed speech; they are actually

lower. A DNN trained on a single speaker seems incapable

of separating a new speaker from background noise.

A straightforward approach for speaker generalization is

to train a DNN-based IRM estimator on a large number of

speakers and noises. Our experiments (see Sec. IV) indicate

that, unfortunately, a DNN does not appear to have the

capacity of modeling many speakers. Even with a large num-

ber of training speakers, a DNN still performs rather poorly

on unseen speakers. A recent study (Kolbæk et al., 2017)

also shows performance degradation of a speaker-generic

model compared to a speaker-specific model. A less chal-

lenging setting, which we call speaker-set-dependent, is to

train a model with a closed set of speakers and test it on the

same speakers. Our experimental results show that the per-

formance of a speaker-set-dependent DNN on seen speakers

degrades as the number of training speakers increases.

Unlike a DNN trained on a single speaker, a speaker-

set-dependent DNN is exposed to many speakers during

training and therefore learns to detect speech patterns for

many different speakers. While a speaker-dependent DNN

focuses on separating one speaker from background noise, a

set-dependent DNN has to search for many potential speak-

ers. When the background noise contains speech components

(e.g., babble noise), a speaker-set-dependent DNN is likely

to mistake interfering speech for target speech since the pat-

terns of interfering speech may resemble those of some train-

ing speakers.

A strategy to resolve the confusability of target speech

and noise is for a speaker-set-dependent model to detect and

focus on a target speaker. One such method is to train many

speaker-dependent models and use speaker identification for

model selection. However, this method has several potential

limitations. First, the performance on seen speakers depends

on the accuracy of speaker identification, which is known to

be challenging in noisy environments (Zhao et al., 2014).

Second, it is limited to the closed set of trained speakers; For

an unseen speaker, it needs to find a way to align the speaker

to a similar trained speaker, which can also be difficult. A

related method based on non-negative matrix factorization

(NMF) learns a dictionary for each training speaker, and

identifies a few speakers to approximate an unseen speaker

during testing (Sun and Mysore, 2013). However, selecting

appropriate speaker dictionaries can be challenging with

nonstationary noises.

A supervised mask estimator typically uses a window of

consecutive time frames to extract features to provide a use-

ful context for improved mask estimation at a current frame.

In other words, each mask frame is estimated independently

given a context window containing limited temporal infor-

mation about a target speaker. However, even with a long

context window, the information beyond the window is not

utilized. Mask estimation at a current frame can potentially

benefit if a model utilizes earlier observations to characterize

the target speaker. Therefore, supervised speech separation

may be better formulated as a sequence-to-sequence map-

ping where a sequence of mask frames is predicted from a

sequence of acoustic features.

In this study, we propose a model to separate unseen

speakers from unseen noises. Our model is based on a recur-

rent neural network (RNN) and accounts for temporal

dynamics of speech. An RNN has self connections to feed

back previous hidden activations, unlike a DNN which is a

feedforward network. For a multilayer RNN, both low-level

and high-level features of the previous time step are carried

forward to facilitate learning of long-term dependencies.

Given an incoming stream of noisy speech, our model ana-

lyzes and separates a target speaker from noise. The model

learns from previous frames to focus on the target speaker

for better speaker generalization. This paper is organized as

follows. Section II describes the proposed model in detail.

Experimental setup is discussed in Sec. III. We present and

analyze experimental results in Sec. IV. Section V concludes

the paper. A preliminary version of this paper is included in

Chen and Wang (2016).

II. SYSTEM DESCRIPTION

For speaker-independent speech separation, effectively

modeling a target speaker is crucial. Given that characteriz-

ing a target speaker likely requires long-term observations,

we propose to use RNNs to account for temporal dynamics

of speech. A traditional DNN-based model only utilizes a

window of features to capture temporal dynamics, which

appears insufficient for speaker characterization for the sake

of speech separation. In contrast, an RNN makes each mask

prediction using information extracted from many previous

frames.

To model temporal dependencies, an RNN is typically

trained with back propagation through time (BPTT). A

standard RNN suffers from the exploding and vanishing
FIG. 1. Performance of a speaker-dependent DNN on seen and unseen

speakers with a babble noise in terms of STOI (in %) at �5 dB SNR.
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gradients during BPTT (Bengio et al., 1994; Pascanu et al.,
2013). While the exploding gradient problem can be miti-

gated using gradient clipping, the vanishing gradient prob-

lem prematurely stops an RNN from learning long-term

dependencies. Long short-term memory (LSTM) (Hochreiter

and Schmidhuber, 1997), a variant of RNN, mitigates the

vanishing gradient problem by introducing a memory cell

that facilitates the information flow over time. LSTM has

been successful in modeling long temporal dependencies in

many recent applications such as language modeling

(Sutskever et al., 2014; Sundermeyer et al., 2015), acoustic

modeling (Graves et al., 2013; Sak et al., 2014) and video

classification (Ng et al., 2015). While recent studies explored

LSTM for speech enhancement (Weninger et al., 2015;

Erdogan et al., 2015), our study focuses on speaker- and

noise-independent speech separation. Figure 2 shows an

LSTM block, which depicts a memory cell and three gates

where the forget gate controls how much previous informa-

tion should be erased from the cell and the input gate con-

trols how much information should be added to the cell. In

this study, we use LSTM defined by the following equations

(Gers et al., 2000):

it ¼ rðWixxt þWihht�1 þ biÞ; (2)

ft ¼ rðWf xxt þWf hht�1 þ bf Þ; (3)

ot ¼ rðWoxxt þWohht�1 þ boÞ; (4)

zt ¼ gðWzxxt þWzhht�1 þ bzÞ; (5)

ct ¼ ft � ct�1 þ it � zt; (6)

ht ¼ ot � gðctÞ; (7)

r sð Þ ¼
1

1þ e�s
; (8)

g sð Þ ¼ es � e�s

es þ e�s
; (9)

where xt, zt, ct, ht represent input, block input, memory cell

and hidden activation at time t, respectively. Input gate, for-

get gate and output gate are denoted as it, ft, and ot, respec-

tively. W’s and b’s denote weights and biases, respectively.

� Represents element-wise multiplication or the gating

operation. While the three gates are bounded to ½0; 1� by the

function rðsÞ, the output of an LSTM block is bounded to

½�1; 1� by both rðsÞ and g(s). Note that the input gate it and

the forget gate ft are dependent on the current lower-layer

input xt and the previous hidden activation ht�1. This depen-

dency makes the updating of the memory cell context-

sensitive, and therefore enables the modeling of complex

temporal dynamics. With training by BPTT, LSTM suppos-

edly learns to store task-relevant and context-sensitive infor-

mation in its memory cells.

In supervised speech separation, we trained LSTM to

maintain the speaker-sensitive information extracted from

many previous frames to improve mask estimation for a cur-

rent frame. The proposed system is illustrated in Fig. 3. We

use four stacked hidden LSTM layers for temporal modeling

and one output layer for mask estimation. We describe the

system using the following equations:

yt ¼ rðWouth
ðLÞ
t þ boutÞ; (10)

x
ðlþ1Þ
t ¼ h

ðlÞ
t ; for L > l � 1; (11)

x
ð1Þ
t ¼ ft; (12)

where ft denotes acoustic features at time t. x
ðlÞ
t and h

ðlÞ
t

represent the input and output of the LSTM block at

layer l and time t, respectively. The estimated mask at

time t is denoted as yt. Wout and bout represent the weight

and bias of the output layer, respectively. While the bot-

tom LSTM layer directly receives acoustic features, the

other LSTM layers take the hidden activation from the

LSTM layer below. The output layer takes the hidden

activation h
ðLÞ
t , L¼ 4, of the top LSTM layer, and esti-

mates the IRM.

As shown in Fig. 3, compared to a DNN-based system

which only passes information from the input layer to the

output layer successively, an LSTM-based system adds mul-

tiple information pathways in the time dimension, where dif-

ferent pathways carry forward features at different levels of

abstraction.

In this study, we use a feature window of 23 frames (11

to the left, 11 to the right) to estimate one frame of the IRM,

which is defined on a 64-channel cochleagram with a 20-ms

frame length and a 10-ms frame shift (Wang and Brown,

2006). The estimated IRM is used to weight subband signals

from a 64-channel gammatone filterbank. The weighted sub-

band signals are summed to derive separated speech. The

input features are 64-dimensional gammatone filterbank

energies (Chen et al., 2016b) extracted from noisy speech.

From the input layer to the output layer, the proposed net-

work has 23� 64, 1024, 1024, 1024, 1024, and 64 units,

respectively. In our evaluations, we compare the proposed

RNN with a DNN baseline, which has five hidden layers

with rectified linear units (ReLUs) (Nair and Hinton, 2010)

and one sigmoidal output layer. From the input layer to the

output layer, the DNN has 23� 64, 2048, 2048, 2048, 2048,

2048, and 64 units, respectively. Compared to the LSTM,

this DNN is deeper and wider aside from no recurrent con-

nections, and it provides a strong baseline.FIG. 2. Diagram of an LSTM block with three gates and a memory cell.
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III. EXPERIMENTAL SETUP

A. Data preparation

We create large training sets with different numbers of

training speakers to investigate speaker generalization of

noise-independent LSTMs and DNNs. The trained models

are tested on six seen speakers and six unseen speakers, both

with unseen noises. Testing on multiple seen speakers is

expected to be less challenging than testing on unseen speak-

ers, and it serves as an intermediate step towards to speaker

generalization.

In our experiments, we use 7138 utterances (83 speak-

ers, about 86 utterances per speaker) from the WSJ0 SI-84

training set (Paul and Baker, 1992), which is widely used for

speech separation and recognition evaluation. To create

noisy speech, we use 10 000 training noises from a sound

effect library (available at http://www.sound-ideas.com), and

two highly nonstationary test noises (babble and cafeteria)

from an Auditec CD (available at http://www.auditec.com).

Among the 83 speakers, all utterances of the six unseen

speakers and the test utterances of six seen speakers are

excluded from training. Since we investigate speaker gener-

alization of noise-independent models, the two test noises

are never used during training. We create the following two

test sets:

• Test Set 1: 150 mixtures are created from 25� 6 utteran-

ces of six seen speakers (three males and three females)

and random segments of the babble noise at �5 dB SNR.
• Test Set 2: 150 mixtures are created from 25� 6 utteran-

ces of six unseen speakers (three males and three females)

and random segments of the babble noise at �5 dB SNR.

We create each training mixture by mixing an utterance

with a random segment drawn from the 10 000 noises at a

random SNR drawn from {�5, �4, �3, �2, �1, 0} dB. To

investigate the impact of the number of training speakers on

speaker generalization, we evaluate three categories of

models:

FIG. 3. Diagram of the proposed sys-

tem. Four stacked LSTM layers are

used to model temporal dynamics of

speech. Three time steps are shown

here.

(a) (b)

(c) (d)

FIG. 4. (Color online) Training and test errors of the DNN and LSTM as the number of training speakers increases. All models are evaluated with a test set of

six seen speakers and a test set of six unseen speakers. Training mixtures are created with {6, 10, 20, 40, 77} speakers and 10 000 noises. The two test sets are

created with the unseen babble noise at �5 dB SNR. All models are noise-independent. (a) Performance of the DNN on the six seen speakers. (b) Performance

of LSTM on the six seen speakers. (c) Performance of the DNN on the six unseen speakers. (d) Performance of LSTM on the six unseen speakers.
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• Speaker-dependent models:

For each speaker in Test Set 1 and Test Set 2, we train

and test on the same speaker. Each training set has 320 000

mixtures and the total duration is about 500 h.

• Speaker-set-dependent model:

Five models are trained with {6, 10, 20, 40, 77} speak-

ers including the six speakers of Test Set 1 and evaluated

with Test Set 1. Each training set has 3 200 000 mixtures

(about 5000 h).

• Speaker-independent models:

Five models are trained with {6, 10, 20, 40, 77} speak-

ers and tested on the six unseen speakers of Test Set 2. Each

training set includes 3 200 000 mixtures (about 5000 h).

B. Optimization methods

We train the DNN and LSTM with the mean square

error (MSE) cost function and the Adam optimizer (Kingma

and Ba, 2015) whose adaptive learning rates lead to faster

convergence than standard stochastic gradient descent. The

initial global learning rate is set to 0.001 and reduced by half

every epoch. The best model is selected by cross validation.

We use a mini-batch size of 256 for speaker-dependent

DNNs. A mini-batch size of 4096 is used for speaker-

set-dependent DNNs as we find a larger batch size slightly

improves optimization. All LSTMs are trained with a mini-

batch size of 256 and with truncated BPTT (Williams and

Peng, 1990) of 250 time steps. For all LSTMs, we add 1 to

the bias in Eq. (5) to facilitate gradient flow and encourage

learning of long-term dependencies in the beginning of train-

ing (Jozefowicz et al., 2015):

ft ¼ rðWf xxt þWf hht�1 þ bf þ 1Þ: (13)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the generalizability of the DNN and LSTM,

we use three metrics including the MSE of the estimated

mask, STOI and HIT–FA rate (Kim et al., 2009). The latter

compares an estimated binary mask with the IBM. HIT

refers the percentage of correctly classified speech-dominant

T-F units, and FA refers to false alarm or the percentage of

wrongly classified noise-dominant T-F units. Since we use

the IRM as the learning target, we binarize it to compute

HIT–FA. During binarization, the local criterion (LC) in the

IBM definition is set to be 5 dB lower than the test SNR.

Both the STOI and HIT–FA rate have been shown to corre-

late with human speech intelligibility well (Healy et al.,
2013; Kim et al., 2009).

A. Performance trend on seen test speakers

We evaluate the DNN and LSTM with six seen

speakers. First, we train with the same six speakers. Figure 4

compares the training and test errors of the DNN and LSTM

over training epochs. Figure 4(a) and Fig. 4(b) show that the

training errors of the DNN and LSTM drop significantly in

TABLE I. Comparison of the DNN and LSTM trained with 77 speakers in

terms of the HIT–FA rate on the six seen speakers and unseen babble noise

at �5 dB SNR.

Model HIT FA HIT–FA

DNN 83% 23% 60%

LSTM 89% 11% 78%

(a) (b)

(c) (d)

FIG. 5. Comparison of the DNN and LSTM in terms of STOI improvement (in %) with the unseen babble noise. (a) Performance of the DNN and LSTM on

six seen speakers at �5 dB SNR. (b) Performance of the DNN and LSTM on six unseen speakers at �5 dB SNR. (c) Performance of the DNN and LSTM on

six seen speakers at �2 dB SNR. (d) Performance of the DNN and LSTM on six unseen speakers at �2 dB SNR.
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the first epoch since each training set contains a very large

number of training samples (about 5000 h). Compared to the

DNN, LSTM converges faster and then appears to overfit the

training utterances of the six speakers. This is expected since

LSTM models utterances as sequences and better fits train-

ing utterances. Indeed, LSTM reaches a lower training error

than the DNN in all conditions. With a fixed training set size

but an increasing number of training speakers, we observe

performance degradation for the DNN but substantial perfor-

mance boost for LSTM. The opposite trends for the DNN

and LSTM reveal the capacity of LSTM in modeling a large

number of speakers. Without utilizing the long-term context,

the DNN treats all segments of training utterances as if they

come from a single speaker. As the DNN is exposed to more

training speakers, it becomes more challenging to separate a

target speaker from the babble noise, whose local spectral-

temporal patterns resemble those of speech. Table I shows

the HIT–FA rates for the DNN and LSTM with the unseen

babble noise at �5 dB SNR. Indeed, the DNN has a much

lower HIT–FA rate than LSTM, and the DNN produces more

than twice FA errors, implying that the DNN is more likely

to mistake background noise as target speech. In contrast,

with a large number of training speakers, LSTM appears to

learn speech dynamics that are shared among speakers.

Figure 5 compares the DNN and LSTM in terms of STOI

improvement. Figure 5(a) shows that LSTM substantially

FIG. 6. (Color online) Visualization of the estimated masks by the DNN

(top), LSTM (middle), and the IRM (bottom). The mixture is created by

mixing an unseen male speaker with the unseen babble noise at �5 dB SNR.

FIG. 7. Comparison of speaker-set-dependent models (trained on 77 speak-

ers and tested on six seen speakers) and speaker-dependent models in terms

of STOI. Group means and standard errors are shown. (a) Performance with

the unseen babble noise. (b) Performance with the unseen cafeteria noise.

FIG. 8. Comparison of speaker-independent models (trained on 77 speakers

and tested on six unseen speakers) and speaker-dependent models in terms

of STOI. Group means and standard errors are shown. (a) Performance with

the unseen babble noise. (b) Performance with the unseen cafeteria noise.
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outperforms the DNN when a large number of training speak-

ers is used. With an increasing number of training speakers,

the STOI improvement decreases for the DNN but increases

for LSTM. In addition, we evaluate the models with a �2 dB

test set and observe consistent improvement of LSTM over

the DNN, as shown in Fig. 5(c).

B. Performance trend on unseen test speakers

For the six unseen test speakers, Figs. 4(c), 4(d), 5(b),

and 5(d) show that both the DNN and LSTM improve as the

number of training speakers increases. Although the

speaker-independent DNN benefits from more training

speakers, the benefit diminishes quickly as the number of

training speakers increases. Unable to utilize the long-term

dependencies, the speaker-independent DNN appears to only

learn a generic speaker model from training speakers. As a

result, the performance of the speaker-set-dependent DNN

degrades somewhat as additional training speakers are added

to the six seen speakers as it becomes more difficult to find a

generic model to represent more speakers.

Compared to the speaker-independent DNN, the

speaker-independent LSTM substantially improves the per-

formance in terms of the MSE and the STOI improvement.

The STOI improvement of LSTM is 7.8% higher than the

DNN with the unseen babble noise at �5 dB SNR. This

clearly indicates that LSTM achieves better speaker

generalization than the DNN. We visualize estimated masks

by the DNN and LSTM in Fig. 6, and observe that LSTM

reduces the error of mistaking the background noise for tar-

get speech (e.g., around frame 850) and better preserves tar-

get speech (e.g., around frame 1425).

C. Model comparisons

We evaluate speaker-dependent, speaker-set-dependent

and speaker-independent models with the babble and cafete-

ria noise at {�5, �2, 0, 2, 5} dB SNRs. Figure 7 compares

speaker-set-dependent DNN, speaker-set-dependent LSTM

and speaker-dependent DNN. The speaker-independent

DNN, speaker-independent LSTM, and speaker-dependent

DNN are compared in Fig. 8. On the one hand, Fig. 7 show

that speaker-set-dependent LSTM with 77 training speakers

outperforms both speaker-dependent and speaker-set-depen-

dent DNNs, indicating that LSTM learns from other speakers

to improve the performance on the six seen speakers. On the

other hand, as shown in Fig. 8, speaker-independent LSTM

outperforms both speaker-dependent and speaker-

independent DNNs on the six unseen speakers, especially at

the very low SNR of �5 dB. LSTM also performs well at the

unseen SNRs of 2 and 5 dB, demonstrating that LSTM gen-

eralizes to unseen noises, unseen speakers and unseen SNRs.

We apply paired t-tests with a significance level of 0.01 and

find that the improvement of the LSTM over the DNN is

FIG. 9. (Color online) Visualization of

speech patterns and memory cell val-

ues. Four utterances of two unseen

speakers (male and female) are

concatenated and mixed with the

unseen babble noise at 0 dB SNR. The

top four plots depict noisy speech

cochleagram, clean speech cochlea-

gram, the IRM and the estimated mask

by LSTM, respectively. The bottom

three plots show values of three differ-

ent cells across time, respectively.
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statistically significant for both seen and unseen speakers at

every test SNR.

In addition to the babble and cafeteria noise, we have

tested speaker-independent DNN and LSTM on two other

unseen noises, namely, the factory noise and the speech

shape noise (SSN). For the factory noise, LSTM improves

the processed STOI over DNN by 3.7% and 2.0% at �5 and

�2 dB, respectively. For SSN, LSTM improves by 5.0% and

2.0% at �5 and �2 dB, respectively.

D. Analysis of LSTM internal representations

As we discussed in Sec. II, LSTM is supposed to memo-

rize long-term contexts to help mask estimation at a current

frame. We analyze what LSTM has learned by visualizing

the memory cells ct in Eq. (6) across time frames. Since dif-

ferent memory cells have different dynamic ranges, we map

the value range of each memory cell to ½0; 1� for better

visualization:

c ¼ ct � cmin

cmax � cmin

; (14)

where cmin and cmax denote the minimum and maximum val-

ues of a memory cell according to a long-term observation,

respectively. Although the internal representations of LSTM

are usually distributed and not intuitive, we find a few mem-

ory cells that exhibit interesting temporal patterns. We select

three memory cells in the third LSTM layer and depict them

in Fig. 9. As shown in the bottom three plots of Fig. 9, the

first memory cell is excited by male speech and inhibited by

female speech. The second cell is activated by female

speech. The third one detects a silent interval following tar-

get speech after a few frames of delay. These patterns sug-

gest that memory cells encode speech contexts.

Besides memory cells, LSTM also takes previous hid-

den activations as input. Therefore, the total information

from previous time steps is encoded by both ct�1 and ht�1.

Since our proposed model has four LSTM layers, the past

information can be represented as the concatenation of eight

vectors:

vstate ¼ c
ð1Þ
t�1

T h
ð1Þ
t�1

T � � � c
ð4Þ
t�1

T h
ð4Þ
t�1

T
h iT

: (15)

To verify if vstate carries useful information, we reset it to a

zero vector to erase past information at different time steps and

examine the impact on subsequent mask estimation. We sepa-

rately reset vstate in speech-dominant and noise-dominant inter-

vals and visualize the resulting estimated masks in Fig. 10. The

FIG. 10. (Color online) Impact of reset-

ting the internal states of LSTM. The

top five plots show the clean speech

cochleagram, noise cochleagram, noisy

speech cochleagram, the IRM, and the

estimated mask by LSTM, respectively.

The sixth and ninth plots show the esti-

mated masks when LSTM internal

states are reset during speech-dominant

intervals. The seventh and eighth plots

show the estimated masks when LSTM

internal states are reset during noise-

dominant intervals.
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sixth and ninth plots of Fig. 10 show that resetting vstate during

speech-dominant intervals does not make much difference as

LSTM appears to quickly recapture the target speaker after

observing strong target speech patterns in a few subsequent

time steps. However, resetting vstate during noise-dominant

intervals may degrade mask estimation for a considerable dura-

tion, as shown in the seventh and eighth plots of Fig. 10.

LSTM is likely distracted by interfering speech contained in

the background and focuses on wrong patterns until strong

target-speech patterns are observed. In other words, LSTM

seems to be context-aware and keep track of a target speaker

for better mask estimation at a current frame.

E. Impact of future frames

In the above experiments, we use 23 time frames,

including 11 future frames, of acoustic features for both the

DNN and LSTM. Incorporating future frames improves

mask estimation but impedes real-time implementation. To

investigate the impact of future frames, we evaluate the

models with different asymmetric windows on six unseen

speakers and the unseen babble noise at �5 and �2 dB

SNRs. Each asymmetric window contains 11 past frames, a

current frame and a different number of future frames. We

do not decrease the past frames as they facilitate learning

and do not violate causality. Figure 11 compares the impact

of future frames on the DNN and LSTM. As shown in Figs.

11(a) and 11(b), LSTM substantially outperforms the DNN

in all conditions. It is worth noting that LSTM without future

frames still outperforms the DNN with 11 future frames, and

gives about 15% STOI improvement over unprocessed

speech in both SNR conditions.

V. DISCUSSION

In this study, we have investigated speaker generaliza-

tion of noise-independent models for supervised speech sep-

aration. Our previous investigation has demonstrated that a

DNN, when trained with a large variety of noises but a fixed

speaker, generalizes to unseen noises and unseen SNRs

(Wang and Wang, 2013; Chen et al., 2016b). However, real

world applications desire a model to perform well with both

unseen speakers and unseen noises. Our experimental results

show that training of a DNN with many speakers does not

perform well on both seen and unseen speakers. This reveals

the limited capacity of DNN in modeling a large number of

speakers. As a DNN is exposed to more training speakers,

the performance on seen speakers drops, suggesting that it

fails to focus on a target speaker. A DNN makes independent

mask estimation given a window of acoustic features, which

appear insufficient to characterize a target speaker for the

sake of speech separation.

We have proposed a separation model based on LSTM

to improve speaker generalization. The proposed model

treats mask estimation as a sequence-to-sequence mapping

problem. By modeling temporal dynamics of speech, LSTM

utilizes previous inputs to characterize and memorize a tar-

get speaker. Therefore mask estimation depends on both the

current input and LSTM internal states. By visualizing

the temporal patterns of LSTM memory cells, we find that

the cell values correlate with speech patterns. Those memory

cells capture different contexts to improve mask estimation

at a current frame. By resetting LSTM internal states in both

speech-dominant and noise-dominant intervals, we find that

LSTM appears to detect and focus on a target speaker to

help resolve the confusability of speech and noise patterns.

The proposed model substantially outperforms an

already strong DNN baseline on both seen and unseen speak-

ers. Interestingly, with more training speakers, the DNN per-

formance on seen speakers degrades, while LSTM improves

the results on seen speakers. This reveals the capacity of

LSTM in modeling individual speakers. In addition, we have

evaluated the dependency of DNN and LSTM on future

frames for separation. Our experimental results show that

LSTM without future frames still significantly outperforms

the DNN with 11 future frames. The proposed model repre-

sents a major step towards speaker- and noise-independent

speech separation.
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