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Abstract—Speech separation can be formulated as a classifica-
tion problem. In classification-based speech separation, supervised
learning is employed to classify time-frequency units as either
speech-dominant or noise-dominant. In very low signal-to-noise
ratio (SNR) conditions, acoustic features extracted from a mix-
ture are crucial for correct classification. In this study, we
systematically evaluate a range of promising features for classifi-
cation-based separation using six nonstationary noises at the low
SNR level of —5 dB, which is chosen with the goal of improving
human speech intelligibility in mind. In addition, we propose a
new feature called multi-resolution cochleagram (MRCG). The
new feature is constructed by combining four cochleagrams at
different spectrotemporal resolutions in order to capture both the
local and contextual information. Experimental results show that
MRCG gives the best classification results among all evaluated
features. In addition, our results indicate that auto-regressive
moving average (ARMA) filtering, a post-processing technique for
improving automatic speech recognition features, also improves
many acoustic features for speech separation.

Index Terms—ARMA filtering, classification, multi-resolution
cochleagram, speech separation.

I. INTRODUCTION

ONAURAL speech separation aims to separate target

speech from background interference given a monaural
recording. It has a wide range of applications such as robust
speech recognition and hearing aid design. Over the past
decades, many approaches have been developed to solve the
monaural speech separation problem. For example, speech
enhancement approaches [25], such as spectral subtraction
and Wiener filtering, make statistical assumptions about the
background noise (e.g. stationarity) and do not deal well with
nonstationary noises, which are quite common in our daily life.
Computational auditory scene analysis (CASA) represents
another approach to speech separation, and it is based on per-
ceptual principles of auditory scene analysis [3]. In CASA, the
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ideal binary mask (IBM) is often considered as a computational
objective [35]. The IBM is a time-frequency (T-F) mask con-
structed from premixed speech and noise, and it is defined as
follows.

(1, if SNR(4 f) > LC
IBM(t, f) = {0, otherwise

where # denotes time and f denotes frequency. The IBM assigns
the value 1 to a T-F unit if the local SNR within the unit exceeds
alocal criterion (LC), and 0 otherwise. In subject tests, IBM sep-
aration has been shown to dramatically improve speech intelli-
gibility in noise for both normal-hearing and hearing-impaired
listeners [4], [24], [37], [1]. The estimation of the IBM amounts
to a binary classification problem where supervised learning is
employed to predict the label of each T-F unit [8]. Recent studies
show that classification-based speech separation produces the
first demonstration of speech intelligibility improvements for
human listeners in background noise [22], [9].

The two key components of classification-based speech sepa-
ration are acoustic features extracted from an input mixture and
classifiers used for supervised learning. While previous studies
have emphasized classifiers, the present study focuses on fea-
tures. Our goal is to reveal how various features perform in
classification-based speech separation. To obtain a fair compar-
ison, we choose and fix a multilayer perceptron (MLP) as the
classifier to simplify and speedup training, as we are mainly
concerned with the relative performance [18]. In addition, we
choose a set of six representative nonstationary noises and fix
the evaluation SNR to —5 dB. This very low SNR level is se-
lected with the goal of improving speech intelligibility in mind.
It is well known that human listeners, even those with signifi-
cant hearing loss, perform nearly perfectly unless the SNR is in
the negative range [15], [28], [37].

In terms of features chosen for evaluation, since the classifi-
cation approach is only recently established for speech separa-
tion, not many features have been developed for this task. We
have therefore performed a systematic literature search for ro-
bust features published for automatic speech recognition (ASR)
in noise, a task that is expected to be related to speech separa-
tion. Feature robustness has been extensively studied in the ASR
literature. With low SNR and nonstationary noise in mind, we
have selected a subset of promising features in our evaluation,
such as relative autocorrelation sequence MFCC (RAS-MFCC),
Gabor filterbank (GFB) features and power normalized cepstral
coefficients (PNCC). These features, together with those previ-
ously investigated for speech separation [38], form the existing
feature set. Based on our evaluation, we also propose a new fea-
ture called multi-resolution cochleagram (MRCG), specifically
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Fig. 1. Diagram of the feature evaluation framework.

designed to achieve the best separation performance. Addition-
ally, we investigate auto-regressive moving average (ARMA)
filtering as a post-processing technique to enhance feature ro-
bustness for further improving speech separation performance.

We should point out that a recent study has evaluated sev-
eral features for classification-based speech separation [38]. Our
study goes beyond [38] in several aspects. First, our evalua-
tion is conducted on more challenging noisy mixtures using a
different classifier (MLP instead of support vector machine).
More importantly, features are chosen more systematically in
our study, which results in a significantly more expansive list.
Finally, while the study in [38] emphasizes feature combina-
tion, our study results in a new, effective feature which performs
better than the complementary feature set suggested in [38].

This paper is organized as follows. Section II describes
feature evaluation framework for classification-based speech
separation. The existing features are described in Section III.
We introduce the proposed MRCG feature in Section IV.
Section V covers feature post-processing and feature combina-
tion. We present experimental results in Section VI. Section VII
concludes the paper. A preliminary version of this paper is
included in [6].

II. EVALUATION FRAMEWORK

In classification-based speech separation, the computational
goal typically is to estimate the IBM that is created from pre-
mixed signals. The time-frequency representation of a cochlea-
gram is frequently used to construct the IBM. In this study, we
use a 32-channel cochleagram with 20 ms frame length and
10 ms frame shift. The local SNR criterion (LC) of the IBM is
set to —10 dB to preserve enough speech information (see [9]).
Note that, once a binary mask is computed, it can be used to
synthesize a time-domain signal by weighting T-F unit signals
in an appropriate way (see Chapter 1 of [36] for more details).

Fig. 1 shows the diagram of the evaluation system, which
consists of the feature extraction component and the MLP clas-
sification component. All mixtures are sampled at 16 kHz. We
extract acoustic features from an input signal at the frame level,
which are sent to an MLP classifier for IBM estimation. We use
a full-band input signal for feature extraction and one MLP for
predicting a mask across all channels. In other words, the MLP
is trained to predict a T-F mask frame by frame as opposed to
sub-band classification in [38].

The features are evaluated based on the mask estimation
quality. There are several criteria for measuring the quality of
an estimated IBM. One straightforward criterion is to compute
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classification accuracy, where the percentage of correctly la-
beled T-F units is calculated for the whole mask. However, this
criterion is agnostic to different classification errors. Recent
work shows that the HIT-FA criterion well correlates with
human intelligibility [22], where HIT refers to the percentage
of correctly classified target-dominant T-F units and FA refers
to false alarm or the percentage of wrongly classified interfer-
ence-dominant T-F units. A good IBM estimate should have
high HIT and low FA, which leads to high HIT-FA rate. We
use both classification accuracy and HIT—FA rate in this study.

III. EXISTING FEATURES

We evaluate an extensive list of existing acoustic features,
consisting of widely used and promising robust speech recog-
nition and separation features. Below we briefly describe a
set of 16 such features, and more details can be found in the
references.

A. Mel-Frequency Cepstral Coefficient (MFCC)

To compute MFCC, an input signal is divided into 20 ms
frames with 10 ms frame shift. We apply a Hamming window to
each frame and derive power spectrum using short-time Fourier
transform. Then we convert power spectrum into mel scale. Fi-
nally, log compression and discrete cosine transform (DCT) are
applied to compute 3 1-dimensional (31-D) MFCC.

B. Perceptual Linear Prediction (PLP)

PLP is designed to minimize the differences between
speakers while keeping important formant structure [10].
To compute PLP, The power spectrum of an input signal is
converted into bark scale, followed by loudness preemphasis
and applying intensity loudness law. Then we derive linear
prediction coefficients, which are then converted to cepstral
coefficients. By using the 12th order linear prediction model,
we end up with 13-D PLP.

C. Relative Spectral Transform PLP (RASTA-PLP)

RASTA-PLP introduces RASTA filtering to PLP [11]. To
compute RASTA-PLP, the power spectrum of an input signal is
wrapped to the bark scale. The resulting spectrum is log-com-
pressed and filtered with the RASTA filter, which emphasizes
the modulation frequencies that are relevant to human speech.
The filtered log-spectrum is then expanded by an exponential
function. Finally, we perform linear prediction analysis to de-
rive 13-D RASTA-PLP.

D. Gammatone Frequency Cepstral Coefficient (GFCC)

To compute GFCC [33], [42], we pass an input signal through
a 64-channel gammatone filterbank to derive sub-band signals.
Each sub-band signal is decimated to 100 Hz, amounting to
10 ms frame shift. We then apply cubic root compression to the
magnitude of the decimated signals and perform DCT to derive
31-D GFCC.

E. Gammatone Frequency Modulation Coefficient (GFMC)

To compute GFMC [26], we first follow the GFCC proce-
dure to compute 31-D GFCC. Then we calculate the modulation
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spectrum of each coefficient. The modulation spectrum corre-
sponds to the Fourier transform of the temporal trajectory of
each coefficient. We use 160 ms frame length and 10 ms frame
shift to calculate the modulation spectrum. For each modula-
tion spectrum, we calculate the energy for 2—16 Hz modulation
frequencies, which are mostly relevant to speech signals [26].
Finally, we concatenate the energy calculated from each coeffi-
cient to form 31-D GFMC.

F. Gammatone Feature (GF)

We compute 64-D GF by following the GFCC procedure ex-
cept that the DCT step is skipped.

G. Zero-Crossings with Peak-Amplitudes (ZCPA)

ZCPA is a speech recognition feature based on zero-cross-
ings [21]. To compute ZCPA, an input signal is decomposed
into sub-band signals by a 32-band gammatone filterbank. We
divide each sub-band signal into 100 ms frames with 10 ms
frame shift. For each frame, we calculate the intervals between
every two upward zero-crossings. We classify each interval into
31 frequency bins where the frequency of an interval is the in-
verse of the interval. Then we identify the peak amplitude within
each interval and add a nonlinear-compressed peak amplitude to
the corresponding frequency bin. The frequency bins are accu-
mulated across all sub-bands and form a histogram, i.e. 31-D
ZCPA.

H. Relative Autocorrelation Sequence MFCC (RAS-MFCC)

RAS-MFCC is designed to suppress background noise
by filtering in the autocorrelation domain [40]. To compute
RAS-MFCC, we calculate one autocorrelation sequence for
each frame of an input signal. A high pass filter is applied to
the temporal trajectory of each dimension of autocorrelation
sequences to suppress slow-varying components. The filtered
autocorrelation sequences are treated as the input to the stan-
dard MFCC procedure to derive 31-D RAS-MFCC.

1. Autocorrelation Sequence MFCC (AC-MFCC)

AC-MFCC is also an autocorrelation-domain feature.
AC-MFCC is designed to reduce the interference from back-
ground noise by discarding low-lag autocorrelation coefficients
[32], by assuming that the effect of the noise is usually con-
centrated in low-lag autocorrelation coefficients. To compute
AC-MFCC, an input signal is divided into frames where the
autocorrelation of each frame is computed. We discard low-lag,
i.e. less than 2 ms, autocorrelation coefficients. Hamming
window is applied to high-lag autocorrelation coefficients and
the corresponding magnitude spectrum is computed. The re-
maining steps follow the MFCC procedure to derive 31 cepstral
coefficients.

J. Phase Autocorrelation MFCC (PAC-MFCC)

PAC-MFCC is an ASR feature similar to RAS-MFCC. PAC-
MFCC computes the angle between a signal and its shifted ver-
sion [17]. It is assumed that angle sequences are less variant than
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autocorrelation sequences in the presence of background noise.
The standard MFCC procedure is applied to the resulting angle
sequences to compute 31-D PAC-MFCC.

K. Power Normalized Cepstral Coefficients (PNCC)

PNCC is a recent ASR feature that utilizes medium-time
processing to mitigate noise corruption and employ power-law
compression instead of log compression in traditional features
[19]. First, the power spectrum of an input signal is inte-
grated using gammatone frequency integration. Then, based on
medium-duration temporal analysis, we perform asymmetric
filtering and temporal masking to subtract background noise.
Finally we apply power-law nonlinearity and DCT to derive 31
coefficients.

L. Gabor Filterbank (GFB) Features

GFB is a recent feature designed for robust ASR by taking
into account the spectrotemporal modulation frequencies [31].
To derive GFB, we compute the log mel-spectrum from an input
signal. The spectrum is filtered by a Gabor filterbank which con-
sists of 41 carefully designed Gabor filters. Representative chan-
nels of each filtered spectrum are selected and concatenated to
form 311-D GFB.

M. Amplitude Modulation Spectrogram (AMS)

The AMS feature is a feature used in speech separation [22].
To compute AMS, the full-wave rectified envelope of an input
signal is decimated by a factor of 4. As in [22], AMS features
are extracted from 32-ms frames (frame shift is still 10 ms). We
apply Hamming window and 256-point FFT. Finally, the 15-D
feature is derived by integrating the FFT magnitudes using 15
triangular windows uniformly centered from 15.6 to 400 Hz.

N. Pitch-Based Features (PITCH)

Pitch-based features are used in a recent separation study
[38]. These are T-F unit level features derived from pitch
analysis. We calculate a cochleagram for an input signal and
derive six features described in [38] (see also [14]) for each T-F
unit. These features capture how likely a T-F unit is dominated
by the target speech by utilizing periodicity and instantaneous
frequency. In our classification-based speech separation, the
ground truth pitch is used during training while the pitch
estimated by a recently proposed robust pitch tracker, PEFAC
[71, is used during testing.

O. Delta-Spectral Cepstral Coefficient (DSCC)

DSCC is an ASR feature very similar to MFCC except that
a delta operation is applied to the spectrum [23]. To compute
DSCC, we first follow the standard MFCC procedure to com-
pute the mel-spectrum. Then a delta operation is applied to de-
rive delta spectral features, whose histogram is normalized to
give a Gaussian distribution. DCT is applied to compute 31 cep-
stral coefficients, based on which we further derive 31-D delta
cepstral coefficients. Finally, we add traditional MFCC cepstral
coefficients to form 93-D DSCC.
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P. Suppression of Slowly-varying Components and the Falling
Edge of The Power Envelope (SSF)

SSF has been designed to remove slowly-varying compo-
nents to reduce noise interference and suppress the falling edge
of power envelope in order to mitigate reverberation [20]. An
input signal is divided into 50 ms medium-duration frames with
10 ms frame shift. The FFT of each frame is integrated across
frequencies using gammatone weighting functions. Then we
apply SSF processing to the resulting power spectrum. The SSF
procedure produces an enhanced version of the original signal.
We apply the MFCC procedure to the enhanced version to de-
rive 31-D SSF.

IV. MULTI-RESOLUTION COCHLEAGRAM FEATURE

Besides the existing features, we propose a new acoustic fea-
ture called the Multi-Resolution Cochleagram (MRCG), which
encodes multi-resolution power distributions in the time-fre-
quency representation of a signal. We combine four cochlea-
grams at different resolutions to construct the MRCG feature.
A high resolution cochleagram captures the local information
while three low resolution cochleagrams capture spectrotem-
poral contexts at different scales.

A. Construction of MRCG

The construction of MRCG is based on the cochleagram rep-
resentation, which is widely used in the CASA literature [36].
To compute the cochleagram, we first pass an input signal to a
gammatone filter bank, where the impulse response of a partic-
ular gammatone filter is [30],

g7 (t) =t exp[=2mtb(f.)]cos (2 fot)u(t), (1)

where f. denotes the center frequency, N the filter order, and
u(t) the step function. The function 6( f,.) decides the bandwidth
given f.. To imitate human auditory filters, the center frequen-
cies f. are uniformly spaced on the equivalent rectangular band-
width (ERB) scale. The relation between b( f..) and f. is shown
in Equation (2).

b(f.) = L.O19x ERB(f.) = 1.019%24.7+(4.37% f./1000+1).

2
The bandwidth b( f..) increases as f. increases, leading to higher
resolutions at low frequencies and lower resolutions at high fre-
quencies. After getting response signals from the gammatone
filterbank, we divide each response signal into 20 ms frames
with a 10 ms frame shift. We derive the cochleagram by com-
puting the power of each frame at each channel [36].

Each T-F unit in the cochleagram contains only local infor-
mation, which may not be sufficient for estimating the mask.
To compensate for this, the MRCG feature provides contextual
information by including the power distribution in the neigh-
borhood of each T-F unit. The MRCG feature is similar to the
GFB feature in the sense that both are designed to encode the
spectrotemporal context systematically (see also [12], [29]).

The steps for computing MRCG are described as follows.

(1) Given an input mixture, compute the first 64-channel

cochleagram, CG1. A log operation is applied to each
T-F unit.
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Fig. 2. Effects of adding contextual information for speech separation with
—5 dB babble.

(2) Similarly, compute CG2 with the frame length of 200 ms
and frame shift of 10 ms.

(3) CG3 is derived by averaging CGl across a square
window of 11 frequency channels and 11 time frames
centered at a given T-F unit. If the window goes beyond
the given cochleagram, the outside units take the value
of zero (i.e. zero padding).

(4) CG4 is computed in a similar way to CG3, except that a
23 x 23 square window is used.

(5) Concatenate CG1-4 to obtain the MRCG feature, which
has 64 x 4 dimensions for each time frame.

Note that, although the IBM is defined using a 32-channel
cochleagram, features can be extracted from a different sized
cochleagram (see Section II). We found that 64-channel features
extracted in Step 1 perform a little better than 32-channel fea-
tures. Also, using zero padding in Step 3 for outside T-F units
leads to slightly better results than simply averaging the units
inside a window.

B. Analysis of MRCG

In the MRCG feature, CG1 contains the local information
embedded in a typical cochleagram while CG2-4 provide fine-
grain and coarse-grain contexts. The parameters used in the
construction of MRCG are decided experimentally as follows.
First, the frame length of CG1 is chosen to match the frame
length of the IBM. Then we fix CG1 and determine CG2 by
expanding to different frame lengths to select the best length.
Similarly, we decide the size of the averaging window for CG3,
and then for CG4. After obtaining CG1-4, we find that adding
more cochleagrams does not provide further performance im-
provements. Fig. 2 illustrates the effects of adding T-F contexts
on the separation results. As shown in Fig. 2, adding CG2-4 con-
sistently improves the results for babble noise at —5 dB SNR.
Similar trends are observed for the other noises.

A visualization of the MRCG feature is given in Fig. 3,
where the left plots features extracted from a babble mixture
at —5 dB SNR and the right from the corresponding clean
speech. As shown in Fig. 3, CGlI is the regular cochleagram,
CQG2 captures temporal context, CG3 encodes relatively small
spectrotemporal context and CG4 encodes relatively large
spectrotemporal context. The broad rationale behind MRCG
is that a T-F unit is more likely to be speech-dominant if it
resides in a cluster of many speech-dominant T-F units. In other
words, a speech-dominant T-F unit not likely appears alone in
a cochleagram.
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Fig. 3. (Color online) Visualization of the MRCG feature. Left side shows MRCG features extracted from a mixture, while the right side shows MRCG features
extracted from premixed clean speech. In CG2-4, feature patterns of the mixture resemble the ones of clean speech to some extent, indicating the MRCG feature

could partially retain spectrotemporal patterns of speech in the presence of noise.

V. FEATURE POST-PROCESSING AND COMBINATION

A. Feature Post-Processing

In speech processing, delta (A) and double-delta (AA) fea-
tures are widely used to capture temporal dynamics. Adding
those features is a popular feature post-processing technique.
For example, A + AA + MFCC yields better speech recog-
nition results than MFCC alone. Recent research shows that A
and AA features also improve speech separation results [38].
In this study, we thus expand each feature by adding A and AA
features.

It has been suggested that applying ARMA filtering to mean
variance normalized features improves speech recognition re-
sults [5]. The ARMA filter is defined below,

C(m) =[C(m — M) +---+C(m — 1)+ C(m)

4o+ C(m+ M)]/(2M +1) )

where C(m) denotes the feature vector at frame m, C(m) de-
notes the filtered feature vector at frame m and M denotes the
order of the filter. The idea behind ARMA filtering is to smooth
temporal trajectory of each feature dimension so that the inter-
ference of background noise is reduced. However, the effect of
ARMA filtering in classification-based speech separation is un-
known. In this study, we add ARMA filtering as an optional
post-processing step and evaluate if it improves speech sepa-
ration results.

B. Feature Combination

A recent study shows that a proper combination of features
can lead to better performance in classification-based speech
separation [38]. A straightforward way of finding complemen-
tary features is to try all combinations of features. However,
the number of combinations is exponential with respect to the
number of features. As in [38], we utilize group Lasso (least
absolute shrinkage and selection operator) to quickly identify

0.411

0.4}

0.39r

HIT-FA

0.38r

037 1 2 3 4 5
ARMA order

Fig. 4. Effect of the ARMA post-processing order for the PLP feature with
babble noise at —5 dB SNR.

complementary features. The idea of group Lasso is to impose
£1/4> mixed norm regularization on logistic regression. It
is known that ¢; /¢> regularization leads to sparsity between
groups (i.e. feature types) [27]. Group Lasso solves the fol-
lowing optimization problem:

[9)\ = arg 1%1?121 Zlog (1 + exp (—yi (,BT:E,L- + a)))

G
2|6z,
g=1

where z; is an input feature vector, y; is its label (taking value
of 1 or —1), 7 denotes the response coefficients which we use to
identify complementary groups, Z, denotes the index set of the
gth group, || - ||2 refers to £3 norm, and A controls group sparsity.
We minimize both the first term, which represents the classifi-
cation error, and the second term, which imposes £7/¢; mixed
norm regularization. The input to the logistic regression is the
concatenation of all feature types where the training labels are
provided by the IBM. The regression is carried out channel by
channel. The resulting response coefficients are averaged across
channels. The features that have relatively large responses are
selected as the complementary features.

2 “



1998

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2014

T 1No ARMA T 1No ARMA T 1No ARMA
I \Vith ARMA I \Vith ARMA I \Vith ARMA
0.8 0.8 0.8
Zos6 0.6 0.6
|
T o4 0.4 0.4
0.2 0.2 0.2
O"MRCG GFCC MFCC PLP O""MRCG GFCC MFGCC PLP O~"MRCG GFCC MFCC PLP
(@) (b) (©
! T 1No ARVA ! = TNo ARMA 1 T 1No ARMA
I \Vith ARMA I \Vith ARMA I \Vith ARMA
0.8 0.8 _ — 0.8
Tos 06 0.6
|
=
T o4 0.4 0.4
0.2 0.2 0.2
O~ MRCG GFCC MFCC PLP O~ MRCG GFCC MFCC PLP O~ MRCG GFCC MFCC PLP
(d) (e) )

Fig. 5. Effects of ARMA filtering in terms of HIT-FA rate (a) Factory (b) Babble (c) Engine (d) Cockpit (¢) Vehicle (f) Tank.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

In our experiments, we create mixtures using the IEEE
corpus recorded by a male speaker [16] and six types of nonsta-
tionary noise from the NOISEX corpus [34]. The noise types
include factory floor noise (Factory), speech babble (Babble),
jet cockpit noise (Cockpit), destroyer engine room noise (En-
gine), military vehicle noise (Vehicle), and tank noise (Tank).
Each mixture is created from one IEEE sentence and one noise
type at —5 dB SNR. To create the training set, we use 480 IEEE
sentences and the first half of each noise. As for the test set,
we use another 50 IEEE sentences and the second half of the
noises. Using different parts of a nonstationary noise ensures
that the noise segments used in the test set are different from
those in the training set. We train and test on the same type of
noise. An MLP with one hidden layer is used as the classifier
for IBM estimation. The hidden layer includes 300 sigmoidal
activation units. We set aside 50 mixtures from the training set
as a cross validation set for early stopping.

B. Effect of ARMA Filtering

We first examine the effect of ARMA filtering, a feature post-
processing technique, on every feature type. The only tunable
parameter in the ARMA filter is the filter order. The experi-
mental results show that 2nd order (M = 2) ARMA filtering
improves the HIT-FA rate for most feature and noise types. For
example, the effect of filter order for the PLP feature with babble
noise is shown in Fig. 4, where one can see the HIT-FA rate
peaks when M = 2, and is significantly better than without
using ARMA (M = 0). In the following experiments, we set
ARMA filter order to 2.

Fig. 5 shows the effects of ARMA filtering on MRCG, GFCC,
MFCC and PLP in each noise condition. The MRCG feature

does not benefit from ARMA filtering, likely because the av-
eraging windows used in MRCG have already embodied spec-
trotemporal smoothing. On average we observe 4% improve-
ment in HIT-FA due to ARMA filtering for all noise types.

C. Comparison among Individual Features

Due to its effectiveness, we apply ARMA filtering to all 16
feature types plus MRCG in our comparisons. For the 50 test
sentences, the overall classification accuracy and the overall
HIT - FA rate of each feature are shown in Table I and Table 11,
respectively, in decreasing order of average performance. In ad-
dition, Fig. 6 shows the median and interquartile range for the
test sentences for the top four features from Tables I and II. The
features can be roughly categorized into the following groups:

(1) Gammatone-domain features: MRCG, GF and GFCC.

(2) Autocorrelation-domain features: RAS-MFCC,

PAC-MFCC and AC-MFCC.
(3) Modulation-domain features: GFMC, AMS, GFB, and
RASTA-PLP.

(4) Linear prediction features: PLP.

(5) MFCC variants: MFCC and DSCC.

(6) Medium-time processing features: PNCC, SSF.

(7) Zero-crossing feature: ZCPA.

(8) Pitch-based feature: PITCH.

The results indicate that the gammatone-domain features
(MRCG, GF, GFCC) perform better than other features. It is
interesting to note that, although the modulation-domain feature
GMFC is derived from GFCC, it does not perform as well as
GFCC. Also interesting is that GFCC is a compact representa-
tion of GF, but the latter performs better than GFCC, probably
because GF contains more information that can be exploited
by the MLP classifier. MFCC, perhaps the most widely used
feature, performs reasonably well when it is processed with
an ARMA filter. Among the autocorrelation-domain features,
RAS-MFCC performs the best and PAC-MFCC the worst. The
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TABLE I

Noise Factory | Babble | Engine | Cockpit | Vehicle | Tank | Average
Feature
MRCG 88.0 79.5 92.2 92.4 89.9 90.5 88.8
GF 87.6 774 91.9 92.1 89.9 90.2 88.2
GFCC 87.7 78.3 91.3 91.9 89.2 89.7 88.0
DSCC 86.6 172 90.5 90.9 88.8 88.8 87.1
MFCC 86.5 745 90.2 91.1 88.8 88.6 87.1
PNCC 86.6 742 90.1 90.9 88.6 88.3 87.0
PLP 86.9 774 89.5 90.9 88.7 88.2 87.0
AC-MFCC 86.7 77.0 89.3 90.5 88.7 88.1 86.7
RAS-MFCC 86.9 76.9 89.4 90.9 87.8 88.1 86.7
GFB 86.3 74.5 89.3 90.9 87.6 87.6 86.0
ZCPA 85.4 752 89.6 90.5 87.4 87.7 86.0
SSF 85.7 75.6 89.0 89.5 88.2 87.4 85.9
RASTA-PLP 85.9 75.9 88.2 89.7 87.9 86.8 85.7
GFMC 84.1 74.3 87.5 89.1 83.5 83.7 83.7
PITCH 85.5 69.6 84.8 88.9 79.2 82.3 81.7
AMS 82.5 74.0 84.8 87.8 75.4 79.1 80.6
PAC-MFCC 77.9 69.8 78.1 81.1 70.8 67.9 74.3
TABLE II
HIT-FA (IN%) FOR S1X NOISE TYPES WITH ARMA POST-PROCESSING AT —5 dB, WHERE FA IS SHOWN IN PARENTHESES
Noise . . .
Feature Factory | Babble | Engine | Cockpit | Vehicle Tank Average
MRCG 63 (7) | 49(13) | 77 (4) 73 (4) 80 (10) | 77 (6) 70 (7)
GF 61 (7) | 45(15) | 75 (4) 71 (3) 80 (10) | 76 (6) 68 (8)
GFCC 61 (6) | 46 (14) | 73 (4) 70 (3) 78 (11) | 74 (6) 67 (7)
DSCC 56 (7) | 42 (14) | 70 (5) 66 (3) 77 (11) | 73 (6) 64 (8)
MFCC 57(7) | 43 (14) | 69 (5) 67 (4) 77 (11) | 72 (7) 64 (8)
PNCC 56 (6) 44 (14) 69 (5) 66 (4) 77 (11) 71 (7) 64 (8)
PLP 56 (6) | 41 (12) | 68 (5) 66 (4) 77 (11) | 71 (7) 63 (8)
AC-MFCC 56 (6) | 42 (14) | 67 (5) 65 (4) 77 (11) | 71 (7) 63 (8)
RAS-MFCC 57 () | 41 (14) | 68 (5) 66 (4) 76 (11) | 71 (7) 63 (8)
GFB 57(7) | 41 (18) | 67 (5) 66 (4) 75 (12) | 70 (7) 63 (9)
ZCPA 55(8) | 40 (16) | 68 (5) 65 (4) 75 (13) | 70 (8) 62 (9)
SSF 54 (7) | 39 (15) | 67 (5) 60 (4) 76 (11) | 69 (7) 61 (8)
RASTA-PLP 52 (6) | 38(15) | 64 (5 61 (4) 76 (12) | 67 (7) 60 (8)
GFMC 48 (7) | 35(15) | 61 (6) 60 (5) 67 (17) | 59 (9) 55 (10)
PITCH 46 3) | 29 (22) | 50 (5) 50 (2) 59 (16) | 53 (7) 48 (9)
AMS 40 (6) 27 (9) 49 (5) 52 (4) 50 31) | 45 (11) | 44 (11)
PAC-MFCC 17 (5) 11 (8) 30 (9) 29 (7) 40 (48) | 21 (17) | 25 (16)
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Fig. 6. Median value and interquartile range of 50 test sentences for average performance on six noises. Results are shown for top four features in terms of
classification accuracy and HIT-FA rate (a) Accuracy (b) HIT-FA.

performance of the pitch-based feature is poor largely due to

the difficulty in pitch estimation at —5

dB.

The proposed MRCG feature performs the best in terms of
both classification accuracy and the HIT-FA rate. It is worth
mentioning that GFB is also a multi-resolution feature where

filters of different sizes are applied to the spectrogram. How-

ever, MRCG performs significantly better than GFB.

The differences among various features are more obvious
when they are tested on the babble noise or the factory noise,
which are more challenging than the other four noises. Observe
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TABLE I1I
HIT-FA (IN%) DURING VOICED INTERVALS

Feature Noise Factory | Babble | Engine | Cockpit | Vehicle | Tank | Average
MRCG 67 46 78 76 73 77 70
GF 66 43 76 75 73 76 68
GFCC 66 45 75 73 72 75 68
MFCC 61 41 71 71 71 72 65
RAS-MFCC 61 39 70 70 68 71 63
TABLE IV
HIT-FA (IN%) DURING UNVOICED INTERVALS
Noise . . .
Factory | Babble | Engine | Cockpit | Vehicle | Tank | Average
Feature
MRCG 36 39 63 49 74 62 54
GF 30 33 60 42 74 59 50
GFCC 28 31 56 40 73 55 47
MEFCC 26 30 54 38 72 54 46
RAS-MFCC 25 30 50 38 68 51 44
that the relative performance of different features is mostly con- 0.15}
sistent from one noise to another. o
.. . (2]
In addition, we examine the performance of features sepa- 5
rately during voiced intervals and unvoiced intervals. Unvoiced % 0.1
speech is more susceptible to background noise due to relatively %
weak energy [13]. Table III and Table IV show the performance go o5t
of six relatively good features during voiced intervals and un- g '
voiced intervals respectively. Again, the MRCG feature pro-
duces the best results during both voiced intervals and unvoiced 0 -
0 1000 2000 3000

intervals.

To further validate the relative performance of features, we
also evaluate three top features with different classifier—a linear
SVM—that performs IBM estimation channel by channel [39].
Note that the input feature vector to each channel SVM is the
same across different frequency channels. The average SVM
classification accuracy for the six noises is 84.3%, 83.3%, and
82.4%, for MRCG, GF, and GFCC, respectively. The corre-
sponding HIT-FA results are 66%, 63%. and 62%, for MRCG,
GF, and GFCC, respectively. These SVM classification results
show the same order of feature effectiveness as with MLP clas-
sification.

D. Feature Combination Results

We apply group Lasso to select complementary features for
each noise type. Each feature type is appended with A and AA
features, as mentioned in Section V-A. The group Lasso results
for the cockpit noise are shown in Fig. 7. The average responses
indicate discriminative power of a feature type. A good feature
type is expected to show prominent responses. In Fig. 7, MRCG
and PITCH have relatively high average responses while others
have nearly no response, indicating that MRCG and PITCH
are complementary. As for the other noise types, MRCG and
PITCH are also identified by group Lasso as complementary
features.

Table V and Table VI show the classification accuracy and
the HIT-FA rate for the combined feature (MRCG concatenated
with PITCH), respectively. When we use ground truth pitch for
training and estimated pitch for testing, the combined feature

Concatenated Feature Dimension

Fig. 7. Average magnitudes of regression coefficients resulted from group
Lasso for the cockpit noise.

performs worse than MRCG alone. This is mainly because pitch
estimation at —5 dB SNR is very challenging and the estimated
pitch tends to be very different from the ground truth one. If
we use ground truth pitch in both training and testing, the com-
bined feature performs better than MRCG alone, especially for
the factory and babble noise. If we use estimated pitch in both
training and testing, the combined feature performs almost the
same as MRCG alone.

E. Comparison between MRCG and a Complementary
Feature Set

In [38], it is found that AMS, RASTA-PLP, and MFCC form
a complementary feature set and their combination outperforms
each individual feature alone. Now we compare this comple-
mentary feature set and the MRCG feature for the aforemen-
tioned six noises at —5 dB SNR. As shown in Fig. §, MRCG
alone outperforms AMS + RASTA-PLP + MFCC. Such im-
provement mainly comes from the contextual information en-
coded in MRCG, which is important for separation in very low
SNR conditions.

VII. DISCUSSION

In this study, we have evaluated an extensive list of acoustic
features specifically for the classification-based speech separa-
tion at the very low SNR level of —5 dB—a condition where
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TABLE V
CLASSIFICATION ACCURACY (IN%) OF COMBINED FEATURE WITH ARMA POST-PROCESSING AT —3 dB

Noise
Factory | Babble | Engine | Cockpit | Vehicle | Tank
Feature
MRCG 88.0 79.5 92.2 92.4 89.9 90.5
MRCG + PITCH (Estimated) 87.1 74.6 90.7 91.1 89.1 88.5
MRCG + PITCH (True) 90.8 85.7 92.3 93.2 90.5 90.7
TABLE VI
HIT-FA (IN%) OF COMBINED FEATURE WITH ARMA POST-PROCESSING AT —5 dB
Noise
Factory | Babble | Engine | Cockpit | Vehicle | Tank
Feature
MRCG 63 49 71 73 80 71
MRCG + PITCH (Estimated) 53 40 71 63 78 71
MRCG + PITCH (True) 70 64 77 76 81 78
09 , o . .
[ ]AMS + RASTA_PLP + MFCC very low SNR condltlops. Our systematic study results in a clear
B VRCG recommendation: the simple MRCG feature without ARMA fil-
08r M tering should be considered as a benchmark in future speech
_ M separation studies, particularly at low SNR levels where human
orr B speech intelligibility is less than perfect.
u<|_ 06k It is noteworthy that PITCH and AMS features are among the
'% first used in classification-based speech separation [18], [22];
o5k a subsequent study combines these two [8]. Our investigation
’ demonstrates that these are among the worst features for speech
04h separation.
Features are of foundational importance for supervised sepa-
0.3 . s ration. As embodied by the popularity of MFCC, progress in un-

Factory Babble Engine Cockpit Vehicle Tank

Fig. 8. Comparison of a complementary feature set (AMS + RASTA-PLP 4
MFCC) and the MRCG feature in terms of HIT-FA.

speech intelligibility is a main concern. In terms of classifica-
tion accuracy and HIT-FA, we have shown that the gamma-
tone-domain features (including GF, GFCC, MRCG) perform
better than other features. The modulation-domain features (in-
cluding GFMC and AMS) perform worse than most of the fea-
tures likely because they do not deal with strong nonstationary
noises well.

In addition, we have proposed a new feature, MRCG, which
captures both local information and spectrotemporal contexts
at different scales. The MRCG feature performs the best among
the evaluated features. A closer look reveals that MRCG consis-
tently produces the best results during both voiced and unvoiced
intervals.

We have explored the effect of ARMA post-processing and
found that the second order ARMA filtering improves most of
the evaluated features by smoothing the temporal trajectories
of feature dimensions. By employing group Lasso, we find that
the MRCG feature and the pitch-based features form the best
feature combination. Experimental results show that this com-
bination yields the best performance if ground truth pitch is
used. However, pitch estimation at —5 dB SNR is very diffi-
cult, and hence this insight of feature complementarity is not
very useful unless pitch estimation improves substantially in

covering new and effective features often lifts performance for
a variety of tasks. Another example is GFCC which was first
introduced for robust speaker identification [33] but has since
been shown to be effective for robust ASR [2] and speech sepa-
ration in [38] and here. Indeed a recent study found that MRCG
outperforms a combination of 11 commonly used features for
voice activity detection (VAD) [41]. Given the relationship be-
tween speech separation and robust ASR, we conjecture that
MRCG is an effective feature for ASR in very noisy conditions.
This conjecture obviously remains to be verified in future study.

Finally we emphasize that the focus of this study is on fea-
tures, not classifiers. The MLP with one hidden layer unlikely
represents the state-of-the-art in supervised speech separation,
and deep neural networks (DNNs) with multiple hidden layers
likely perform better [39]. Producing the best performing speech
separation system is not the direct objective of this study, and
such a system would require both effective features and effec-
tive classifiers. With that said, it is worth noting that the supe-
rior VAD performance of MRCG shown in [41] is consistently
demonstrated with different DNN classifiers. It will be inter-
esting to study how features like MRCG interact with DNN clas-
sifiers for optimal classification.
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