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Abstract— Speech separation is the task of separating 

target speech from background interference. 

Traditionally, speech separation is studied as a signal 

processing problem. A more recent approach formulates 

speech separation as a supervised learning problem, where 

the discriminative patterns of speech, speakers, and 

background noise are learned from training data. Over the 

past decade, many supervised separation algorithms have 

been put forward. In particular, the recent introduction of 

deep learning to supervised speech separation has 

dramatically accelerated progress and boosted separation 

performance. This article provides a comprehensive 

overview of the research on deep learning based 

supervised speech separation in the last several years. We 

first introduce the background of speech separation and 

the formulation of supervised separation. Then we discuss 

three main components of supervised separation: learning 

machines, training targets, and acoustic features. Much of 

the overview is on separation algorithms where we review 

monaural methods, including speech enhancement 

(speech-nonspeech separation), speaker separation (multi-

talker separation), and speech dereverberation, as well as 

multi-microphone techniques. The important issue of 

generalization, unique to supervised learning, is discussed. 

This overview provides a historical perspective on how 

advances are made. In addition, we discuss a number of 

conceptual issues, including what constitutes the target 

source.   

 

Index Terms—Speech separation, speaker separation, 

speech enhancement, supervised speech separation, deep 

learning, deep neural networks, speech dereverberation, 

time-frequency masking, array separation, beamforming. 

I.INTRODUCTION 

The goal of speech separation is to separate target speech from 

background interference. Speech separation is a fundamental 

task in signal processing with a wide range of applications, 
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including hearing prosthesis, mobile telecommunication, and 

robust automatic speech and speaker recognition. The human 

auditory system has the remarkable ability to extract one 

sound source from a mixture of multiple sources. In an 

acoustic environment like a cocktail party, we seem capable of 

effortlessly following one speaker in the presence of other 

speakers and background noises. Speech separation is 

commonly called the “cocktail party problem,” a term coined 

by Cherry in his famous 1953 paper [26].  

Speech separation is a special case of sound source 

separation. Perceptually, source separation corresponds to 

auditory stream segregation, a topic of extensive research in 

auditory perception. The first systematic study on stream 

segregation was conducted by Miller and Heise [124] who 

noted that listeners split a signal with two alternating sine-

wave tones into two streams. Bregman and his colleagues 

have carried out a series of studies on the subject, and in a 

seminal book [15] he introduced the term auditory scene 

analysis (ASA) to refer to the perceptual process that 

segregates an acoustic mixture and groups the signal 

originating from the same sound source. Auditory scene 

analysis is divided into simultaneous organization and 

sequential organization. Simultaneous organization (or 

grouping) integrates concurrent sounds, while sequential 

organization integrates sounds across time. With auditory 

patterns displayed on a time-frequency representation such as 

a spectrogram, main organizational principles responsible for 

ASA include: Proximity in frequency and time, harmonicity, 

common amplitude and frequency modulation, onset and 

offset synchrony, common location, and prior knowledge (see 

among others [163] [15] [29] [11] [30] [32]). These grouping 

principles also govern speech segregation [201] [154] [31] [4] 

[49] [93]. From ASA studies, there seems to be a consensus 

that the human auditory system segregates and attends to a 

target sound, which can be a tone sequence, a melody, or a 

voice. More debatable is the role of auditory attention in 

stream segregation [17] [151] [148] [120]. In this overview, 

we use speech separation (or segregation) primarily to refer to 

the computational task of separating the target speech signal 

from a noisy mixture.  

How well do we perform speech segregation? One way of 

quantifying speech perception performance in noise is to 

measure speech reception threshold, the required SNR level 

for a 50% intelligibility score. Miller [123] reviewed human 

intelligibility scores when interfered by a variety of tones, 

broadband noises, and other voices. Listeners were tested for 

their word intelligibility scores, and the results are shown in 

Figure 1. In general, tones are not as interfering as broadband 
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Figure 1. Word intelligibility score with respect to 

SNR for different kinds of interference (from [172], 

redrawn from [123]). The dashed line indicates 50% 

intelligibility. For speech interference, scores are 

shown for 1, 2, and 8 interfering speakers. 

 

noises. For example, speech is intelligible even when mixed 

with a complex tone glide that is 20 dB more intense (pure 

tones are even weaker interferers). Broadband noise is the 

most interfering for speech perception, and the corresponding 

SRT is about 2 dB. When interference consists of other voices, 

the SRT depends on how many interfering talkers are present. 

As shown in Fig. 1, the SRT is about –10 dB for a single 

interferer but rapidly increases to –2 dB for two interferers. 

The SRT stays about the same (around –1 dB) when the 

interference contains four or more voices. There is a whopping 

SRT gap of 23 dB for different kinds of interference! 

Furthermore, it should be noted that listeners with hearing loss 

show substantially higher SRTs than normal-hearing listeners, 

ranging from a few decibels for broadband stationary noise to 

as high as 10-15 dB for interfering speech [44] [127], 

indicating a poorer ability of speech segregation.  

With speech as the most important means of human 

communication, the ability to separate speech from 

background interference is crucial, as the speech of interest, or 
target speech, is usually corrupted by additive noises from 

other sound sources and reverberation from surface 

reflections. Although humans perform speech separation with 

apparent ease, it has proven to be very challenging to construct 

an automatic system to match the human auditory system in 

this basic task. In his 1957 book [27], Cherry made an 

observation: “No machine has yet been constructed to do just 

that [solving the cocktail part problem].” His conclusion, 

unfortunately for our field, has remained largely true for 6 

more decades, although recent advances reviewed in this 

article have started to crack the problem.  

Given the importance, speech separation has been 

extensively studied in signal processing for decades. 

Depending on the number of sensors or microphones, one can 

categorize separation methods into monaural (single-

microphone) and array-based (multi-microphone). Two 

traditional approaches for monaural separation are speech 

enhancement [113] and computational auditory scene analysis 

(CASA) [172]. Speech enhancement analyzes general 

statistics of speech and noise, followed by estimation of clean 

speech from noisy speech with a noise estimate [40] [113]. 

The simplest and most widely used enhancement method is 

spectral subtraction [13], in which the power spectrum of the 

estimated noise is subtracted from that of noisy speech. In 

order to estimate background noise, speech enhancement 

techniques typically assume that background noise is 

stationary, i.e. its spectral properties do not change over time, 

or at least are more stationary than speech. CASA is based on 

perceptual principles of auditory scene analysis [15] and 

exploits grouping cues such as pitch and onset. For example, 

the tandem algorithm separates voiced speech by alternating 

pitch estimation and pitch-based grouping [78].  

An array with two or more microphones uses a different 

principle to achieve speech separation. Beamforming, or 

spatial filtering, boosts the signal that arrives from a specific 

direction through proper array configuration, hence 

attenuating interference from other directions [164] [14] [9] 

[88]. The simplest beamformer is a delay-and-sum technique 

that adds multiple microphone signals from the target 

direction in phase and uses phase differences to attenuate 

signals from other directions. The amount of noise attenuation 

depends on the spacing, size, and configuration of the array – 
generally the attenuation increases as the number of 

microphones and the array length increase. Obviously, spatial 

filtering cannot be applied when target and interfering sources 

are co-located or near to one another. Moreover, the utility of 

beamforming is much reduced in reverberant conditions, 

which smear the directionality of sound sources.  

A more recent approach treats speech separation as a 

supervised learning problem. The original formulation of 

supervised speech separation was inspired by the concept of 

time-frequency (T-F) masking in CASA. As a means of 

separation, T-F masking applies a two-dimensional mask 

(weighting) to the time-frequency representation of a source 

mixture in order to separate the target source [117] [172] 

[170]. A major goal of CASA is the ideal binary mask (IBM) 

[76], which denotes whether the target signal dominates a T-F 

unit in the time-frequency representation of a mixed signal. 

Listening studies show that ideal binary masking dramatically 

improves speech intelligibility for normal-hearing (NH) and 

hearing-impaired (HI) listeners in noisy conditions [16] [1] 

[109] [173]. With the IBM as the computational goal, speech 

separation becomes binary classification, an elementary form 

of supervised learning. In this case, the IBM is used as the 

desired signal, or target function, during training. During 

testing, the learning machine aims to estimate the IBM. 

Although it served as the first training target in supervised 

speech separation, the IBM is by no means the only training 

target and Sect. III presents a list of training targets, many 

shown to be more effective. 

Since the formulation of speech separation as classification, 

the data-driven approach has been extensively studied in the 

speech processing community. Over the last decade, 

supervised speech separation has substantially advanced the 

state-of-the-art performance by leveraging large training data 

and increasing computing resources [21]. Supervised 

separation has especially benefited from the rapid rise in deep 
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learning – the topic of this overview. Supervised speech 

separation algorithms can be broadly divided into the 

following components: learning machines, training targets, 

and acoustic features. In this paper, we will first review the 

three components. We will then move to describe 

representative algorithms, where monaural and array-based 

algorithms will be covered in separate sections. As 

generalization is an issue unique to supervised speech 

separation, this issue will be treated in this overview.  

Let us clarify a few related terms used in this overview to 

avoid potential confusion. We refer to speech separation or 

segregation as the general task of separating target speech 

from its background interference, which may include 

nonspeech noise, interfering speech, or both, as well as room 

reverberation. Furthermore, we equate speech separation and 

the cocktail party problem, which goes beyond the separation 

of two speech utterances originally experimented with by 

Cherry [26]. By speech enhancement (or denoising), we mean 

the separation of speech and nonspeech noise. If one is limited 

to the separation of multiple voices, we use the term speaker 

separation.  

This overview is organized as follows. We first review the 

three main aspects of supervised speech separation, i.e., 

learning machines, training targets, and features, in Sections 

II, III, and IV, respectively. Section V is devoted to monaural 
separation algorithms, and Section VI to array-based 

algorithms. Section VII concludes the overview with a 

discussion of a few additional issues, such as what signal 

should be considered as the target and what a solution to the 

cocktail party problem may look like.  

II.CLASSIFIERS AND LEARNING MACHINES 

Over the past decade, DNNs have significantly elevated the 

performance of many supervised learning tasks, such as image 

classification [28], handwriting recognition [53], automatic 

speech recognition [73], language modeling [156], and 

machine translation [157]. DNNs have also advanced the 

performance of supervised speech separation by a large 

margin. This section briefly introduces the types of DNNs for 

supervised speech separation: feedforward multilayer 

perceptrons (MLPs), convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), and generative adversarial 

networks (GANs).  

The most popular model in neural networks is an MLP that 

has feedforward connections from the input layer to the output 

layer, layer-by-layer, and the consecutive layers are fully 

connected. An MLP is an extension of Rosenblatt’s perceptron 

[142] by introducing hidden layers between the input layer and 

the output layer.  An MLP is trained with the classical 

backpropagation algorithm [143] where the network weights 

are adjusted to minimize the prediction error through gradient 

descent. The prediction error is measured by a cost (loss) 

function between the predicted output and the desired output, 

the latter provided by the user as part of supervision. For 

example, when an MLP is used for classification, a popular 

cost function is cross entropy: 

−
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where 𝑖 indexes an output model neuron and 𝑝𝑖,𝑐 denotes the 

predicted probability of 𝑖  belonging to class c. N and C 

indicate the number of output neurons and the number of 

classes, respectively. 𝐼𝑖,𝑐 is a binary indicator, which takes 1 if 

the desired class of neuron 𝑖 is 𝑐 and 0 otherwise. For function 

approximation or regression, a common cost function is mean 

square error (MSE): 
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where 𝑦𝑖̂ and 𝑦𝑖  are the predicted output and desired output for 

neuron i, respectively. 

The representational power of an MLP increases as the 

number of layers increases [142] even though, in theory, an 

MLP with two hidden layers can approximate any function 

[70]. The backpropagation algorithm is applicable to an MLP 

of any depth. However, a deep neural network (DNN) with 

many hidden layers is difficult to train from a random 

initialization of connection weights and biases because of the 

so-called vanishing gradient problem, which refers to the 

observation that, at lower layers (near the input end), gradients 

calculated from backpropagated error signals from upper 

layers, become progressively smaller or vanishing. As a result 

of vanishing gradients, connection weights at lower layers are 

not modified much and therefore lower layers learn little 

during training. This explains why MLPs with a single hidden 

layer were the most widely used neural network prior to the 

advent of DNN.  

A breakthrough in DNN training was made by Hinton et al. 

[74]. The key idea is to perform layerwise unsupervised 

pretraining with unlabeled data to properly initialize a DNN 

before supervised learning (or fine tuning) is performed with 

labeled data. More specifically, Hinton et al. [74] proposed 

restrictive Boltzmann machines (RBMs) to pretrain a DNN 

layer by layer, and RBM pretraining is found to improve 

subsequent supervised learning. A later remedy was to use a 

rectified linear unit (ReLU) [128] to replace the traditional 

sigmoid activation function, which converts a weighted sum of 

the inputs to a model neuron to the neuron’s output. Recent 

practice shows that a moderately deep MLP with ReLUs can 

be effectively trained with large training data without 

unsupervised pretraining. Recently, skip connections have 

been introduced to facilitate the training of very deep MLPs 

[153] [62]. 

A class of feedforward networks, known as convolutional 

neural networks (CNNs) [106] [10], has been demonstrated to 

be well suited for pattern recognition, particularly in the visual 

domain. CNNs incorporate well-documented invariances in 

pattern recognition such as translation (shift) invariance. A 

typical CNN architecture is a cascade of pairs of a 

convolutional layer and a subsampling layer. A convolutional 

layer consists of multiple feature maps, each of which learns 

to extract a local feature regardless of its position in the 

previous layer through weight sharing: the neurons within the 

same module are constrained to have the same connection 

weights despite their different receptive fields. A receptive 

field of a neuron in this context denotes the local area of the 

previous layer that is connected to the neuron, whose 
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operation of a weighted sum is akin to a convolution1. Each 

convolutional layer is followed by a subsampling layer that 

performs local averaging or maximization over the receptive 

fields of the neurons in the convolutional layer. Subsampling 

serves to reduce resolution and sensitivity to local variations. 

The use of weight sharing in CNN also has the benefit of 

cutting down the number of trainable parameters. Because a 

CNN incorporates domain knowledge in pattern recognition 

via its network structure, it can be better trained by the 

backpropagation algorithm despite the fact that a CNN is a 

deep network. 

RNNs allow recurrent (feedback) connections, typically 

between hidden units. Unlike feedforward networks, which 

process each input sample independently, RNNs treat input 

samples as a sequence and model the changes over time. A 

speech signal exhibits strong temporal structure, and the signal 

within the current frame is influenced by the signals in the 

previous frames. Therefore, RNNs are a natural choice for 

learning the temporal dynamics of speech. We note that a 

RNN through its recurrent connections introduces the time 

dimension, which is flexible and infinitely extensible, a 

characteristic not shared by feedforward networks no matter 

how deep they are [169]; in a way, a RNN can be viewed a 

DNN with an infinite depth [146]. The recurrent connections 

are typically trained with backpropagation through time [187]. 
However, such RNN training is susceptible to the vanishing or 

exploding gradient problem [137]. To alleviate this problem, a 

RNN with long short-term memory (LSTM) introduces 

memory cells with gates to facilitate the information flow over 

time [75]. Specifically, a memory cell has three gates: input 

gate, forget gate and output gate. The forget gate controls how 

much previous information should be retained, and the input 

gate controls how much current information should be added 

to the memory cell. With these gating functions, LSTM allows 

relevant contextual information to be maintained in memory 

cells to improve RNN training.  

Generative adversarial networks (GANs) were recently 

introduced with simultaneously trained models: a generative 

model G and a discriminative model D [52]. The generator G 

learns to model labeled data, e.g. the mapping from noisy 

speech samples to their clean counterparts, while the 

discriminator – usually a binary classifier – learns to 

discriminate between generated samples and target samples 

from training data. This framework is analogous to a two-

player adversarial game, where minimax is a proven strategy 

[144]. During training, G aims to learn an accurate mapping so 

that the generated data can well imitate the real data so as to 

fool D; on the other hand, D learns to better tell the difference 

between the real data and synthetic data generated by G. 

Competition in this game, or adversarial learning, drives both 

models to improve their accuracy until generated samples are 

indistinguishable from real ones. The key idea of GANs is to 

use the discriminator to shape the loss function of the 

generator. GANs have recently been used in speech 

enhancement (see Sect. V.A).  

In this overview, a DNN refers to any neural network with 

at least two hidden layers [10] [73], in contrast to popular 

learning machines with just one hidden layer such as 

                                                           
1 More straightforwardly a correlation. 

commonly used MLPs, support vector machines (SVMs) with 

kernels, and Gaussian mixture models (GMMs). As DNNs get 

deeper in practice, with more than 100 hidden layers actually 

used, the depth required for a neural network to be considered 

a DNN can be a matter of a qualitative, rather than 

quantitative, distinction. Also, we use the term DNN to denote 

any neural network with a deep structure, whether it is 

feedforward or recurrent. 

We should mention that DNN is not the only kind of 

learning machine that has been employed for speech 

separation. Alternative learning machines used for supervised 

speech separation include GMM [147] [97], SVM [55], and 

neural networks with just one hidden layer [91]. Such studies 

will not be further discussed in this overview as its theme is 

DNN based speech separation. 

III.TRAINING TARGETS 

In supervised speech separation, defining a proper training 

target is important for learning and generalization. There are 

mainly two groups of training targets, i.e., masking-based 

targets and mapping-based targets. Masking-based targets 

describe the time-frequency relationships of clean speech to 

background interference, while mapping-based targets 

correspond to the spectral representations of clean speech. In 

this section, we survey a number of training targets proposed 

in the field. 
Before reviewing training targets, let us first describe 

evaluation metrics commonly used in speech separation. A 

variety of metrics has been proposed in the literature, 

depending on the objectives of individual studies. These 

metrics can be divided into two classes: signal-level and 

perception-level.  At the signal level, metrics aim to quantify 

the degrees of signal enhancement or interference reduction. 

In addition to the traditional SNR, speech distortion (loss) and 

noise residue in a separated signal can be individually 

measured [77] [113].  A prominent set of evaluation metrics 

comprises SDR (source-to-distortion ratio), SIR (source-to-

interference ratio), and SAR (source-to-artifact ratio) [165].  

As the output of a speech separation system is often 

consumed by the human listener, a lot of effort has been made 

to quantitatively predict how the listener perceives a separated 

signal. Because intelligibility and quality are two primary but 

different aspects of speech perception, objective metrics have 

been developed to separately evaluate speech intelligibility 

and speech quality. With the IBM’s ability to elevate human 

speech intelligibility and its connection to the articulation 

index (AI) [114] – the classic model of speech perception – 

the HIT−FA rate has been suggested as an evaluation metric 

with the IBM as the reference [97]. HIT denotes the percent of 

speech-dominant T-F units in the IBM that is correctly 

classified and FA (false-alarm) refers to the percent of noise-

dominant units that is incorrectly classified. The HIT−FA rate 

is found to be well correlated with speech intelligibility [97]. 

In recent years, the most commonly used intelligibility metric 

is STOI (short-time objective intelligibility), which measures 

the correlation between the short-time temporal envelopes of a 

reference (clean) utterance and a separated utterance [158] 

[89].  The value range of STOI is typically between 0 and 1, 

which can be interpreted as percent correct. Although STOI 
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tends to overpredict intelligibility scores [64] [102], no 

alternative metric has been shown to consistently correlate 

with human intelligibility better. For speech quality, PESQ 

(perceptual evaluation of speech quality) is the standard metric 

[140] and recommended by the International 

Telecommunication Union (ITU) [87]. PESQ applies an 

auditory transform to produce a loudness spectrum, and 

compares the loudness spectra of a clean reference signal and 

a separated signal to produce a score in a range of -0.5 to 4.5, 

corresponding to the prediction of the perceptual MOS (mean 

opinion score).  

A. Ideal Binary Mask 

The first training target used in supervised speech 

separation is the ideal binary mask [76] [141] [77] [168], 

which is inspired by the auditory masking phenomenon in 

audition [126] and the exclusive allocation principle in 

auditory scene analysis [15]. The IBM is defined on a two-

dimensional T-F representation of a noisy signal, such as a 

cochleagram or a spectrogram:  

 
𝐼𝐵𝑀 = {

1,      if  𝑆𝑁𝑅(𝑡, 𝑓) > 𝐿𝐶 

  0,     otherwise                  
 (1) 

where 𝑡  and 𝑓  denote time and frequency, respectively. The 

IBM assigns the value 1 to a unit if the SNR within the T-F 

unit exceeds the local criterion (LC) or threshold, and 0 

otherwise. Fig. 2(a) shows an example of the IBM, which is 

defined on a 64-channel cochleagram. As mentioned in Sect. I, 

IBM masking dramatically increases speech intelligibility in 

noise for normal-hearing and hearing-impaired listeners. The 

IBM labels every T-F unit as either target-dominant or 

interference-dominant. As a result, IBM estimation can 

naturally be treated as a supervised classification problem. A 

commonly used cost function for IBM estimation is cross 

entropy, as described in Section II. 

B. Target Binary Mask 

Like the IBM, the target binary mask (TBM) categorizes 

all T-F units with a binary label. Different from the IBM, the 

TBM derives the label by comparing the target speech energy 

in each T-F unit with a fixed interference: speech-shaped 

noise, which is a stationary signal corresponding to the 

average of all speech signals. An example of the TBM is 

shown in Fig. 2(b). Target binary masking also leads to 

dramatic improvement of speech intelligibility in noise [99], 

and the TBM has been used as a training target [51] [112]. 

C. Ideal Ratio Mask 

Instead of a hard label on each T-F unit, the ideal ratio mask 

(IRM) can be viewed as a soft version of the IBM [152] [130] 

[178] [84]: 

 
𝐼𝑅𝑀 = (

𝑆(𝑡, 𝑓)2

𝑆(𝑡, 𝑓)2 + 𝑁(𝑡, 𝑓)2
)

𝛽

 (2) 

where 𝑆(𝑡, 𝑓)2  and 𝑁(𝑡, 𝑓)2 denote speech energy and noise 

energy within a T-F unit, respectively. The tunable 

parameter  scales the mask, and is commonly chosen to 0.5.  

With the square root the IRM preserves the speech energy 

with each T-F unit, under the assumption that 𝑆(𝑡, 𝑓) and 

𝑁(𝑡, 𝑓) are uncorrelated.  This assumption holds well for 

additive noise, but not for convolutive interference as in the 

case of room reverberation (late reverberation, however, can 

be reasonably considered as uncorrelated interference.) 

Without the root the IRM in (2) is similar to the classical 

Wiener filter, which is the optimal estimator of target speech 

in the power spectrum. MSE is typically used as the cost 

function for IRM estimation. An example of the IRM is shown 

 

    (a) IBM        (b) TBM               (c) IRM   (d) GF-TPS 

 

   (e) SMM    (f) PSM          (g) TMS   

Figure 2. Illustration of various training targets for a TIMIT utterance mixed with a factory noise at -5 dB SNR. 
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in Fig. 2(c). 

D. Spectral Magnitude Mask 

The spectral magnitude mask (SMM) (called FFT-MASK 

in [178]) is defined on the STFT (short-time Fourier 

transform) magnitudes of clean speech and noisy speech:  

 
SMM(𝑡, 𝑓) =

|𝑆(𝑡, 𝑓)|

|𝑌(𝑡, 𝑓)|
 (3) 

where |𝑆(𝑡, 𝑓)| and |𝑌(𝑡, 𝑓)| represent spectral magnitudes of 

clean speech and noisy speech, respectively. Unlike the IRM, 

the SMM is not upper-bounded by 1. To obtain separated 

speech, we apply the SMM or its estimate to the spectral 

magnitudes of noisy speech, and resynthesize separated 

speech with the phases of noisy speech (or an estimate of 

clean speech phases). Fig. 2(e) illustrates the SMM.  

E. Phase-Sensitive Mask 

The phase-sensitive mask (PSM) extends the SMM by 

including a measure of phase [41]: 

 
PSM(𝑡, 𝑓) =

|𝑆(𝑡, 𝑓)|

|𝑌(𝑡, 𝑓)|
𝑐𝑜𝑠 𝜃 (4) 

where 𝜃 denotes the difference of the clean speech phase and 

the noisy speech phase within the T-F unit. The inclusion of 

the phase difference in the PSM leads to a higher SNR, and 

tends to yield a better estimate of clean speech than the SMM 

[41]. An example of the PSM is shown in Fig. 2(f).  

F. Complex Ideal Ratio Mask 

The complex ideal ratio mask (cIRM) is an ideal mask in 

the complex domain. Unlike the aforementioned masks, it can 

perfectly reconstruct clean speech from noisy speech [188]: 

 
𝑆 = 𝑐𝐼𝑅𝑀 ∗ 𝑌 

(5) 

where 𝑆, 𝑌 denote the STFT of clean speech and noisy speech, 

respectively, and ‘ ∗ ’ represents complex multiplication. 

Solving for mask components results in the following 

definition: 

 𝑐𝐼𝑅𝑀 =
𝑌𝑟𝑆𝑟 + 𝑌𝑖𝑆𝑖

𝑌𝑟
2 + 𝑌𝑖

2 + 𝑖
𝑌𝑟𝑆𝑖 − 𝑌𝑖𝑆𝑟

𝑌𝑟
2 + 𝑌𝑖

2  
   

(6) 

where 𝑌𝑟  and 𝑌𝑖  denote real and imaginary components of 

noisy speech, respectively, and 𝑆𝑟  and 𝑆𝑖  real and imaginary 

components of clean speech, respectively. The imaginary unit 

is denoted by ‘i’. Thus the cIRM has a real component and an 

imaginary component, which can be separately estimated in 

the real domain.  Because of complex-domain calculations, 

mask values become unbounded. So some form of 

compression should be used to bound mask values, such as a 

tangent hyperbolic or sigmoidal function [188] [184] .  

 Williamson et al. [188] observe that, in Cartesian 

coordinates, structure exists in both real and imaginary 

components of the cIRM, whereas in polar coordinates, 

structure exists in the magnitude spectrogram but not phase 

spectrogram. Without clear structure, direct phase estimation 

would be intractable through supervised learning, although we 

should mention a recent paper that uses complex-domain 

DNN to estimate complex STFT coefficients [107]. On the 

other hand, an estimate of the cIRM provides a phase estimate, 

a property not possessed by PSM estimation.  

G. Target Magnitude Spectrum 

The target magnitude spectrum (TMS) of clean speech, or 

|𝑆(𝑡, 𝑓)|, is a mapping-based training target [116] [196] [57] 

[197]. In this case supervised learning aims to estimate the 

magnitude spectrogram of clean speech from that of noisy 

speech. Power spectrum, or other forms of spectra such as mel 

spectrum, may be used instead of magnitude spectrum, and a 

log operation is usually applied to compress the dynamic 

range and facilitate training. A prominent form of the TMS is 

the log-power spectrum normalized to zero mean and unit 

variance [197]. An estimated speech magnitude is then 

combined with noisy phase to produce the separated speech 

waveform. In terms of cost function, MSE is usually used for 

TMS estimation. Alternatively, maximum likelihood can be 

employed to train a TMS estimator that explicitly models 

output correlation [175]. Fig. 2(g) shows an example of the 

TMS. 

H. Gammatone Frequency Target Power Spectrum 

Another closely related mapping-based target is the 

 
(a) STOI results        (b) PESQ results 

Figure 3. Comparison of training targets. (a) In terms of STOI. (b) In terms of PESQ. Clean speech is mixed with a factory noise at 

-5 dB, 0 dB and 5 dB SNR. Results for different training targets as well as a speech enhancement (SPEH) algorithm and an NMF 

method are highlighted for 0 dB mixtures. Note that the results and the data in this figure can be obtained from a Matlab toolbox at 

http://web.cse.ohio-state.edu/pnl/DNN_toolbox/. 
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gammatone frequency target power spectrum (GF-TPS) [178]. 

Unlike the TMS defined on a spectrogram, this target is 

defined on a cochleagram based on a gammatone filterbank. 

Specifically, this target is defined as the power of the 

cochleagram response to clean speech. An estimate of the GF-

TPS is easily converted to the separated speech waveform 

through cochleagram inversion [172]. Fig. 2(d) illustrates this 

target. 

I. Signal Approximation 

The idea of signal approximation (SA) is to train a ratio 

mask estimator that minimizes the difference between the 

spectral magnitude of clean speech and that of estimated 

speech [186] [81]: 

 𝑆𝐴(𝑡, 𝑓) =  [𝑅𝑀(𝑡, 𝑓)|𝑌(𝑡, 𝑓)| − |𝑆(𝑡, 𝑓)|]2 (7) 

𝑅𝑀(𝑡, 𝑓) refers to an estimate of the SMM. So, SA can be 

interpreted as a target that combines ratio masking and 

spectral mapping, seeking to maximize SNR [186]. A related, 

earlier target aims for the maximal SNR in the context of IBM 

estimation [91]. For the SA target, better separation 

performance is achieved with two-stage training [186]. In the 

first stage, a learning machine is trained with the SMM as the 

target. In the second stage, the learning machine is fine-tuned 

by minimizing the loss function of (7). 

 

A number of training targets have been compared using a 

fixed feedforward DNN with three hidden layers and the same 

set of input features [178]. The separated speech using various 

training targets is evaluated in terms of STOI and PESQ, for 

predicted speech intelligibility and speech quality, 

respectively. In addition, a representative speech enhancement 

algorithm [66] and a supervised nonnegative matrix 

factorization (NMF) algorithm [166] are evaluated as 

benchmarks. The evaluation results are given in Figure 3. A 

number of conclusions can be drawn from this study. First, in 

terms of objective intelligibility, the masking-based targets as 

a group outperform the mapping-based targets, although a 

recent study [155] indicates that masking is advantageous only 

at higher input SNRs and at lower SNRs mapping is more 

advantageous 2 .  In terms of speech quality, ratio masking 

performs better than binary masking. Particularly illuminating 

is the contrast between the SMM and the TMS, which are the 

same except for the use of  |𝑌(𝑡, 𝑓)| in the denominator of the 

SMM (see (3)). The better estimation of the SMM may be 

attributed to the fact that the target magnitude spectrum is 

insensitive to the interference signal and SNR, whereas the 

SMM is. The many-to-one mapping in the TMS makes its 

estimation potentially more difficult than SMM estimation. In 

addition, the estimation of unbounded spectral magnitudes 

tends to magnify estimation errors [178]. Overall, the IRM and 

the SMM emerge as the preferred targets. In addition, DNN 

based ratio masking performs substantially better than 

supervised NMF and unsupervised speech enhancement.  

The above list of training targets is not meant to be 

exhaustive, and other targets have been used in the literature. 

Perhaps the most straightforward target is the waveform (time-

                                                           
2 The conclusion is also nuanced for speaker separation [206]. 

domain) signal of clean speech. This indeed was used in an 

early study that trains an MLP to map from a frame of noisy 

speech waveform to a frame of clean speech waveform, which 

may be called temporal mapping [160].  Although simple, 

such direct mapping does not perform well even when a DNN 

is used in place of a shallow network [182] [34]. In [182], a 

target is defined in the time domain but the DNN for target 

estimation includes modules for ratio masking and inverse 

Fourier transform with noisy phase. This target is closely 

related to the PSM3. A recent study evaluates oracle results of 

a number of ideal masks and additionally introduces the so-

called ideal gain mask (IGM) [184], defined in terms of a 

priori SNR and a posteriori SNR commonly used in 

traditional speech enhancement [113]. In [192], the so-called 

optimal ratio mask that takes into account of the correlation 

between target speech and background noise [110] was 

evaluated and found to be an effective target for DNN-based 

speech separation.  

IV.FEATURES 

Features as input and learning machines play 

complementary roles in supervised learning. When features 

are discriminative, they place less demand on the learning 

machine in order to perform a task successfully. On the other 

hand, a powerful learning machine places less demand on 

features. At one extreme, a linear classifier, like Rosenblatt’s 
perceptron, is all that is needed when features make a 

classification task linearly separable. At the other extreme, the 

input in the original form without any feature extraction (e.g. 

waveform in audio) suffices if the classifier is capable of 

learning appropriate features. In between are a majority of 

tasks where both feature extraction and learning are important.  

Early studies in supervised speech separation use only a few 

features such as interaural time differences (ITD) and 

interaural level (intensity) differences (IID) [141] in binaural 

separation, and pitch-based features [91] [78] [55] and 

amplitude modulation spectrogram (AMS) [97] in monaural 

separation. A subsequent study [177] explores more monaural 

features including mel-frequency cepstral coefficient (MFCC), 

gammatone frequency cepstral coefficient (GFCC) [150], 

perceptual linear prediction (PLP) [67], and relative spectral 

transform PLP (RASTA- PLP) [68]. Through feature selection 

using group Lasso, the study recommends a complementary 

feature set comprising AMS, RASTA-PLP, and MFCC (and 

pitch if it can be reliably estimated), which has since been 

used in many studies.  

We conducted a study to examine an extensive list of 

acoustic features for supervised speech separation at low 

SNRs [22]. The features have been previously used for robust 

automatic speech recognition and classification-based speech 

separation. The feature list includes mel-domain, linear-

prediction, gammatone-domain, zero-crossing, 

autocorrelation, medium-time-filtering, modulation, and pitch-

based features. The mel-domain features are MFCC and delta-

spectral cepstral coefficient (DSCC) [104], which is similar to 

MFCC except that a delta operation is applied to mel-

                                                           
3 This was first pointed out by Hakan Erdogan in personal 

communication. 
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spectrum. The linear prediction features are PLP and RASTA-

PLP. The three gammatone-domain features are gammatone 

feature (GF), GFCC, and gammatone frequency modulation 

coefficient (GFMC) [119]. GF is computed by passing an 

input signal to a gammatone filterbank and applying a 

decimation operation to subband signals. A zero-crossing 

feature, called zero-crossings with peak-amplitudes (ZCPA) 

[96], computes zero-crossing intervals and corresponding peak 

amplitudes from subband signals derived using a gammatone 

filterbank. The autocorrelation features are relative 

autocorrelation sequence MFCC (RAS-MFCC) [204], 

autocorrelation sequence MFCC (AC-MFCC) [149] and phase 

autocorrelation MFCC (PAC-MFCC) [86], all of which apply 

the MFCC procedure in the autocorrelation domain. The 

medium-time filtering features are power normalized cepstral 

coefficients (PNCC) [95] and suppression of slowly-varying 

components and the falling edge of the power envelope (SSF) 

[94]. The modulation domain features are Gabor filterbank 

(GFB) [145] and AMS features. Pitch-based (PITCH) features 

calculate T-F level features based on pitch tracking and use 

periodicity and instantaneous frequency to discriminate 

speech-dominant T-F units from noise-dominant ones. In 

addition to existing features, we proposed a new feature called 

Multi-Resolution Cochleagram (MRCG) [22], which 

computes four cochleagrams at different spectrotemporal 
resolutions to provide both local information and a broader 

context.  

The features are post-processed with the auto-regressive 

moving average (ARMA) filter [19] and evaluated with a 

fixed MLP based IBM mask estimator. The estimated masks 

are evaluated in terms of classification accuracy and the 

HIT−FA rate. The HIT−FA results are shown in Table 1. As 

shown in the table, gammatone-domain features (MRCG, GF, 

and GFCC) consistently outperform the other features in both 

accuracy and HIT−FA rate, with MRCG performing the best. 

Cepstral compaction via discrete cosine transform (DCT) is 

not effective, as revealed by comparing GF and GFCC 

features. Neither is modulation extraction, as shown by 

comparing GFCC and GMFC, the latter calculated from the 

former. It is worth noting that the poor performance of pitch 

features is largely due to inaccurate estimation at low SNRs, 

as ground-truth pitch is shown to be quite discriminative.  

Recently, Delfarah and Wang [34] performed another 

feature study that considers room reverberation, and both 

speech denoising and speaker separation. Their study uses a 

fixed DNN trained to estimate the IRM, and the evaluation 

results are given in terms of STOI improvements over 

unprocessed noisy and reverberant speech. The features added 

in this study include log spectral magnitude (LOG-MAG) and 

log mel-spectrum feature (LOG-MEL), both of which are 

commonly used in supervised separation  [196] [82]. Also 

included is waveform signal (WAV) without any feature 

extraction. For reverberation, simulated room impulse 

responses (RIRs) and recorded RIRs are both used with 

reverberation time up to 0.9 seconds. For denoising, 

evaluation is done separately for matched noises where the  

first half of each nonstationary noise is used in training and 

second half for testing, and unmatched noises where 

completely new noises are used for testing. For cochannel 

(two-speaker) separation, the target talker is male while the 

interfering talker is either female or male. Table 2 shows the 

STOI gains for the individual features evaluated. In the 

anechoic, matched noise case, STOI results are largely 

consistent with Table 1. Feature results are also broadly 

consistent using simulated and recorded RIRs. However, the 

best performing features are different for the matched noise, 
unmatched noise, and speaker separation cases. Besides 

MRCG, PNCC and GFCC produce the best results for the 

unmatched noise and cochannel condition, respectively. For  

feature combination, this study concludes that the most 

effective feature set consists of PNCC, GF, and LOG-MEL for 

speech enhancement, and PNCC, GFCC, and LOG-MEL for 

speaker separation.  

The large performance differences caused by features in 

both Table 1 and Table 2 demonstrate the importance of 

features for supervised speech separation. The inclusion of 

raw waveform signal in Table 2 further suggests that, without 

feature extraction, separation results are poor. But it should be 

noted that, the feedforward DNN used in [34] may not couple 

well with waveform signals, and CNNs and RNNs may be 

better suited for so-called end-to-end separation. We will 

come to this issue later. 

Table 1. Classification performance of a list of acoustic features in terms of HIT−FA (in %) for six noises at -5 dB SNR, where 

FA is shown in parentheses (from [22]). Boldtype indicates best scores. 
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V.MONAURAL SEPARATION ALGORITHMS 

In this section, we discuss monaural algorithms for speech 

enhancement, speech dereverberation as well as 

dereverberation plus denoising, and speaker separation. We 

explain representative algorithms and discuss generalization of 

supervised speech separation.  

A. Speech Enhancement 

To our knowledge, deep learning was first introduced to 

speech separation by Wang and Wang in 2012 in two 

conference papers [179] [180], which were later extended to a 

journal version in 2013 [181]. They used DNN for subband 

classification to estimate the IBM. In the conference versions, 

feedforward DNNs with RBM pretraining were used as binary 

classifiers, as well as feature encoders for structured 

perceptrons [179] and conditional random fields [180]. They 

reported strong separation results in all cases of DNN usage, 

with better results for DNN used for feature learning due to 

the incorporation of temporal dynamics in structured 

prediction. 

In the journal version [181], the input signal is passed 

through a 64-channel gammatone filterbank to derive subband 

signals, from which acoustic features are extracted within each 

T-F unit. These features form the input to subband DNNs (64 

in total) to learn more discriminative features. This use of 

DNN for speech separation is illustrated in Figure 4. After 

DNN training, input features and learned features of the last 

hidden layer are concatenated and fed to linear SVMs to 

estimate the subband IBM efficiently. This algorithm was 

further extended to a two-stage DNN [65], where the first 

stage is trained to estimate the subband IBM as usual and the 

second stage explicitly incorporates the T-F context in the 

following way. After the first-stage DNN is trained, a unit-

level output before binarization can be interpreted as the 

posterior probability that speech dominates the T-F unit. 

Hence the first-stage DNN output is considered a posterior 

mask. In the second stage, a T-F unit takes as input a local 

window of the posterior mask centered at the unit. The two-

stage DNN is illustrated in Fig. 5. This second-stage structure 

Table 2. STOI improvements (in %) for a list of features averaged on a set of test noises (from [34]). “Sim.” and “Rec.” indicate 

simulated and recorded room impulse responses. Boldface indicates the best scores in each condition. In cochannel (two-talker) 

cases, the performance is shown separately for a female interferer and male interferer (in parentheses) with a male target talker.  

 

Feature  

Matched noise  Unmatched noise  Cochannel   

Average 
Anechoic Sim. RIRs Rec. RIRs  Anechoic Sim. RIRs Rec. RIRs  Anechoic Sim. RIRs Rec. RIRs  

MRCG  7.12 14.25 12.15  7.00 7.28 8.99  21.25(13.00) 22.93 (13.19) 21.29 (12.81)  12.92 

GF  6.19 13.10 11.37  6.71 7.87 8.24  22.56(11.87) 23.95 (12.31) 22.35 (12.87)  12.71 

GFCC  5.33 12.56 10.99  6.32 6.92 7.01  23.53 (14.34) 23.95 (14.01) 22.76 (13.90)  12.50 

LOG-MEL  5.14 12.07 10.28  6.00 6.98 7.52  21.18 (13.88) 22.75 (13.54) 21.71 (13.18)  12.08 

LOG-MAG  4.86 12.13 9.69  5.75 6.64 7.19  20.82 (13.84) 22.57 (13.40) 21.82 (13.55)  11.91 

GFB  4.99 12.47 11.51  6.22 7.01 7.86  19.61 (13.34) 20.86 (11.97) 19.97 (11.60)  11.75 

PNCC  1.74 8.88 10.76  2.18 8.68 10.52  19.97 (10.73) 19.47 (10.03) 19.35 (9.56)  10.78 

MFCC  4.49 11.03 9.69  5.36 5.96 6.26  19.82 (11.98) 20.32 (11.47) 19.66 (11.54)  10.72 

RAS-MFCC  2.61 10.47 9.56  3.08 6.74 7.37  18.12 (11.38) 19.07 (11.19) 17.87 (10.30)  10.44 

AC-MFCC  2.89 9.63 8.89  3.31 5.61 5.91  18.66 (12.50) 18.64 (11.59) 17.73 (11.27)  9.87 

PLP  3.71 10.36 9.10  4.39 5.03 5.81  16.84 (11.29) 16.73 (10.92) 15.46 (9.50)  9.46 

SSF-II  3.41 8.57 8.68  4.18 5.45 6.00  16.76 (10.07) 17.72 (9.18) 18.07 (8.93)  9.09 

SSF-I  3.31 8.35 8.53  4.09 5.17 5.77  16.25 (10.44) 17.70 (9.40) 18.04 (9.35)  8.97 

RASTA-PLP  1.79 7.27 8.56  1.97 6.62 7.92  11.03 (6.76) 10.96 (6.06) 10.27 (6.28)  7.46 

PITCH  2.35 4.62 4.79  3.36 3.36 4.61  19.71 (9.37) 17.82 (8.45) 16.87 (6.72)  7.03 

GFMC  -0.68 7.05 5.00  -0.54 4.44 4.16  5.04 (-0.07) 6.01 (0.33) 4.97 (0.28)  4.40 

WAV  0.94 2.32 2.68  0.02 0.99 1.63  11.62 (4.81) 11.92 (6.25) 10.54 (1.05)  3.89 

AMS  0.31 0.30 -1.38  0.19 -2.99 -3.40  11.73 (5.96) 10.97 (6.76) 10.20 (4.90)  1.71 

PAC-MFCC  0.00 -0.33 -0.82  0.18 -0.92 -0.67  0.95 (0.15) 1.25 (0.26) 1.17 (0.09)  -0.17 

 

 

 

Figure 4. Illustration of DNN for feature learning, and learned features are then used by linear SVM for IBM estimation (from [181]). 
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is reminiscent of a convolutional layer in CNN but without 

weight sharing. This way of leveraging contextual information 

is shown to significantly improve classification accuracy. 

Subject tests demonstrate that this DNN produced large 

intelligibility improvements for both HI and NH listeners, with 

HI listeners benefiting more [65]. This is the first monaural 

algorithm to provide substantial speech intelligibility 

improvements for HI listeners in background noise, so much 

so that HI subjects with separation outperformed NH subjects 

without separation. 

In 2013, Lu et al. [116] published an Interspeech paper that 

uses a deep autoencoder (DAE) for speech enhancement. A 

basic autoencoder (AE) is an unsupervised learning machine, 

typically having a symmetric architecture with one hidden 

layer with tied weights, that learns to map an input signal to 

itself. Multiple trained AEs can be stacked into a DAE that is 

then subject to traditional supervised fine-tuning, e.g. with a 

backpropagation algorithm. In other words, autoencoding is an 

alternative to RBM pretraining.  The algorithm in [116] learns 

to map from the mel-frequency power spectrum of noisy 

speech to that of clean speech, so it can be regarded as the first 

mapping based method4.  

Subsequently, but independent of [116], Xu et al. [196] 

published a study using a DNN with RBM pretraining to map 

from the log power spectrum of noisy speech to that of clean 

                                                           
4 The authors also published a paper in Interspeech 2012 [115] where 

a DAE is trained in an unsupervised fashion to map from the mel-

spectrum of clean speech to itself. The trained DAE is then used to 

“recall” a clean signal from a noisy input for robust ASR. 

speech, as shown in Fig. 6.  Unlike [116], the DNN used in 

[196] is a standard feedforward MLP with RBM pretraining. 

After training, DNN estimates clean speech’s spectrum from a 

noisy input. Their experimental results show that the trained 

DNN yields about 0.4 to 0.5 PESQ gains over noisy speech on 

untrained noises, which are higher than those obtained by a 

representative traditional enhancement method. 

 

Many subsequent studies have since been published along 

the lines of T-F masking and spectral mapping. In [186] [185], 

RNNs with LSTM were used for speech enhancement and its 

application to robust ASR, where training aims for signal 

approximation (see Sect. III.I). RNNs were also used in [41] to 

estimate the PSM. In [132] [210], a deep stacking network 

was proposed for IBM estimation and a mask estimate was 

then used for pitch estimation. The accuracy of both mask 

estimation and pitch estimation improves after the two 

modules iterate for several cycles. A DNN was used to 

simultaneously estimate the real and imaginary components of 

the cIRM, yielding better speech quality over IRM estimation 

[188]. Speech enhancement at the phoneme level has been 

recently studied [183] [18]. In [59], the DNN takes into 

account of perceptual masking with a piecewise gain function. 

In [198], multi-objective learning is shown to improve 

enhancement performance. It has been demonstrated that a 

hierarchical DNN performing subband spectral mapping 

yields better enhancement than a single DNN performing 

fullband mapping [39]. In [161], skip connections between 

non-consecutive layers are added to DNN to improve 

enhancement performance. Multi-target training with both 

 

Figure 6. Diagram of a DNN-based spectral mapping method for speech enhancement (from [196]). The feature extraction and 

waveform reconstruction modules are further detailed. 

 

 

Figure 5. Schematic diagram of a two-stage DNN for speech separation (from [65]). 
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masking and mapping based targets is found to outperform 

single-target training [205]. CNNs have also been used for 

IRM estimation [83] and spectral mapping [46] [136, 138].  

Aside from masking and mapping based approaches, there 

is recent interest in using deep learning to perform end-to-end 

separation, i.e. temporal mapping without resorting to a T-F 

representation. A potential advantage of this approach is to 

circumvent the need to use the phase of noisy speech in 

reconstructing enhanced speech, which can be a drag for 

speech quality, particularly when input SNR is low. Recently, 

Fu et al. [47] developed a fully convolutional network (a CNN 

with fully connected layers removed) for speech enhancement. 

They observe that full connections make it difficult to map 

both high and low frequency components of a waveform 

signal, and with their removal, enhancement results improve. 

As a convolution operator is the same as a filter or a feature 

extractor, CNNs appear to be a natural choice for temporal 

mapping.  

A recent study employs a GAN to perform temporal 

mapping [138]. In the so-called speech enhancement GAN 

(SEGAN), the generator is a fully convolutional network, 

performing enhancement or denoising. The discriminator 

follows the same convolutional structure as G, and it transmits 

information of generated waveform signals versus clean 

signals back to G. D can be viewed as providing a trainable 

loss function for G. SEGAN was evaluated on untrained noisy 

conditions, but the results are inconclusive and worse than 

masking or mapping methods. In another GAN study [122], G 

tries to enhance the spectrogram of noisy speech while D tries 

to distinguish between the enhanced spectrograms and those 

of clean speech. The comparisons in [122] show that the 

enhancement results by this GAN are comparable to those 

achieved by a DNN.   

Not all deep learning based speech enhancement methods 

build on DNNs. For example, Le Roux et al. [105] proposed 

deep NMF that unfolds NMF operations and includes 

multiplicative updates in backpropagation. Vu et al. [167] 

presented an NMF framework in which a DNN is trained to 

map NMF activation coefficients of noisy speech to their clean 

version.  

B.  Generalization of Speech Enhancement Algorithms 

For any supervised learning task, generalization to 

untrained conditions is a crucial issue. In the case of speech 

enhancement, data-driven algorithms bear the burden of proof 

when it comes to generalization, because the issue does not 

arise in traditional speech enhancement and CASA algorithms 

which make minimal use of supervised training. Supervised 

enhancement has three aspects of generalization: noise, 

speaker, and SNR. Regarding SNR generalization, one can 

simply include more SNR levels in a training set and practical 

experience shows that supervised enhancement is not sensitive 

to precise SNRs used in training. Part of the reason is that, 

even though a few mixture SNRs are included in training, 

local SNRs at the frame level and T-F unit level usually vary 

over a wide range, providing a necessary variety for a learning 

machine to generalize well. An alternative strategy is to adopt 

progressive training with increasing numbers of hidden layers 

 
Figure 7. DNN architecture for speech enhancement with an autoencoder for unsupervised adaptation (from [98]). The AE 

stacked on top of a DNN serves as a purity checker for estimated clean speech from the bottom DNN. 𝑆(1) denotes the spectrum 

of a speech signal, 𝑆(2) the spectrum of a noise signal, and 𝑆(1)̃  an estimate of 𝑆(1).  
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to handle lower SNR conditions [48].  

In an effort to address the mismatch between training and 

test conditions, Kim and Smaragdis [98] proposed a two-stage 

DNN where the first stage is a standard DNN to perform 

spectral mapping and the second stage is an autoencoder that 

performs unsupervised adaptation during the test stage. The 

AE is trained to map the magnitude spectrum of a clean 

utterance to itself, much like [115], and hence its training does 

not need labeled data. The AE is then stacked on top of the 

DNN, and serves as a purity checker as shown in Fig. 7. The 

rationale is that well enhanced speech tends to produce a small 

difference (error) between the input and the output of the AE, 

whereas poorly enhanced speech should produce a large error. 

Given a test mixture, the already-trained DNN is fine-tuned 

with the error signal coming from the AE. The introduction of 

an AE module provides a way of unsupervised adaptation to 

test conditions that are quite different from the training 

conditions, and is shown to improve the performance of 

speech enhancement.  

Noise generalization is fundamentally challenging as all 

kinds of stationary and nonstationary noises may interfere 

with a speech signal. When available training noises are 

limited, one technique is to expand training noises through 

noise perturbation, particularly frequency perturbation [23]; 

specifically, the spectrogram of an original noise sample is 

perturbed to generate new noise samples. To make the DNN-

based mapping algorithm of Xu et al. [196] more robust to 

new noises, Xu et al. [195] incorporate noise aware training, 

i.e. the input feature vector includes an explicit noise estimate. 

With noise estimated via binary masking, the DNN with noise 

aware training generalizes better to untrained noises. 

Noise generalization is systematically addressed in [24]. 

The DNN in this study was trained to estimate the IRM at the 

frame level. In addition, the IRM is simultaneously estimated 

over several consecutive frames and different estimates for the 

same frame are averaged to produce a smoother, more 

accurate mask (see also [178]). The DNN has five hidden 

layers with 2048 ReLUs in each. The input features for each 

frame are cochleagram response energies (the GF feature in 

Tables 1 and 2).  The training set includes 640,000 mixtures 

created from 560 IEEE sentences and 10,000 (10K) noises 

from a sound effect library (www.sound-ideas.com) at the 

fixed SNR of -2 dB. The total duration of the noises is about 

125 hours, and the total duration of training mixtures is about 

380 hours. To evaluate the impact of the number of training 

noises on noise generalization, the same DNN is also trained 

with 100 noises as done in [181]. The test sets are created 

using 160 IEEE sentences and nonstationary noises at various 

SNRs. Neither test sentences nor test noises are used during 

training. The separation results measured in STOI are shown 

in Table 3, and large STOI improvements are obtained by the 

10K-noise model. In addition, the 10K-noise model 

substantially outperforms the 100-noise model, and its average 

performance matches the noise-dependent models trained with 

the first half of the training noises and tested with the second 

half. Subject tests show that the noise-independent model 

resulting from large-scale training significantly improves 

speech intelligibility for NH and HI listeners in unseen noises. 

This study strongly suggests that large-scale training with a 

wide variety of noises is a promising way to address noise 

Table 3.  Speech enhancement results at -2 dB SNR measured in STOI (from [24]). 

 Babble1 Cafeteria Factory Babble2 Average 

Unprocessed  0.612 0.596 0.611 0.611 0.608 

100-noise model  0.683 0.704 0.750 0.688 0.706 

10K-noise model  0.792 0.783 0.807 0.786 0.792 

Noise-dependent model 0.833 0.770 0.802 0.762 0.792 

 

 

Figure 8. Diagram of an LSTM based speech separation system (from [20]). 
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generalization.  

As for speaker generalization, a separation system trained 

on a specific speaker would not work well for a different 

speaker. A straightforward attempt for speaker generalization 

would be to train with a large number of speakers. However, 

experimental results [20] [100] show that a feedforward DNN 

appears incapable of modeling a large number of talkers. Such 

a DNN typically takes a window of acoustic features for mask 

estimation, without using the long-term context. Unable to 

track a target speaker, a feedforward network has a tendency 

to mistake noise fragments for target speech. RNNs naturally 

model temporal dependencies, and are thus expected to be 

more suitable for speaker generalization than feedforward 

DNN.  

We have recently employed RNN with LSTM to address 

speaker generalization of noise-independent models [20]. The 

model, shown in Figure 8, is trained on 3,200,000 mixtures 

created from 10,000 noises mixed with 6, 10, 20, 40, and 77 

speakers. When tested with trained speakers, as shown in Fig. 

9(a), the performance of the DNN degrades as more training 

speakers are added to the training set, whereas the LSTM 

benefits from additional training speakers. For untrained test 

speakers, as shown in Fig. 9(b), the LSTM substantially 

outperforms the DNN in terms of STOI. LSTM appears able 

to track a target speaker over time after being exposed to many 

speakers during training. With large-scale training with many 

speakers and numerous noises, RNNs with LSTM represent an 

effective approach for speaker- and noise-independent speech 

enhancement.  
 

 
(a) Results for trained speakers at -5 dB SNR. 

 
(b) Results for untrained speakers at -5 dB SNR. 

Figure 9.  STOI improvements of a feedforward DNN and a RNN with LSTM (from [20]). 
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Figure 10. Diagram of a DNN for speech dereverberation based 

on spectral mapping (from [57]). 
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C.  Speech Dereverberation and Denoising 

In a real environment, speech is usually corrupted by 

reverberation from surface reflections. Room reverberation 

corresponds to a convolution of the direct signal and an RIR, 

and it distorts speech signals along both time and frequency.  

Reverberation is a well-recognized challenge in speech 

processing, particularly when it is combined with background 

noise. As a result, dereverberation has been actively 

investigated for a long time [5] [191] [131] [61].  

Han et al. [57] proposed the first DNN based approach to 

speech dereverberation. This approach uses spectral mapping 

on a cochleagram. In other words, a DNN is trained to map 

from a window of reverberant speech frames to a frame of 

anechoic speech, as illustrated in Fig. 10. The trained DNN 

can reconstruct the cochleagram of anechoic speech with 

surprisingly high quality. In their later work [58], they apply 

spectral mapping on a spectrogram and extend the approach to 

perform both dereverberation and denoising. 

A more sophisticated system was proposed recently by Wu 

et al. [190], who observe that dereverberation performance 

improves when frame length and shift are chosen differently 

depending on the reverberation time (T60). Based on this 

observation, their system includes T60 as a control parameter 

in feature extraction and DNN training. During the 

dereverberation stage, T60 is estimated and used to choose 

appropriate frame length and shift for feature extraction. This 

so-called reverberation-time-aware model is illustrated in Fig. 

11. Their comparisons show an improvement in 

dereverberation performance over the DNN in [58].  

To improve the estimation of anechoic speech from 

reverberant and noisy speech, Xiao et al. [194] proposed a 

DNN trained to predict static, delta and acceleration features 

at the same time. The static features are log magnitudes of 

clean speech, and the delta and acceleration features are 

derived from the static features. It is argued that DNN that 

predicts static features well should also predict delta and 

acceleration features well. The incorporation of dynamic 

features in the DNN structure helps to improve the estimation 

of static features for dereverberation. 

Zhao et al. [211] observe that spectral mapping is more 

effective for dereverberation than T-F masking, whereas 

masking works better than mapping for denoising. 

Consequently, they construct a two-stage DNN where the first 

stage performs ratio masking for denoising and the second 

stage spectral mapping for dereverberation. Furthermore, to 

alleviate the adverse effects of using the phase of reverberant-

noisy speech in resynthesizing the waveform signal of 

enhanced speech, this study extends the time-domain signal 

reconstruction technique in [182]. Here the training target is 

defined in the time-domain, but clean phase is used during 

training unlike in [182] where noisy phase is used. The two 

stages are individually trained first, and then jointly trained. 

The results in [211] show that the two-stage DNN model 

significantly outperforms the single-stage models for either 

mapping or masking.  

D.  Speaker Separation 

The goal of speaker separation is to extract multiple speech 

signals, one for each speaker, from a mixture containing two 

or more voices. After deep learning was demonstrated to be 

capable of speech enhancement, DNN has been successfully 

applied to speaker separation under a similar framework, 

which is illustrated in Figure 12 in the case of two-speaker or 

cochannel separation.  

According to our literature search, Huang et al. [81] were 

the first to introduce DNN for this task. This study addresses 

two-speaker separation using both a feedforward DNN and an 

RNN. The authors argue that the summation of the spectra of 

two estimated sources at frame t, 𝑺̂1(𝑡)  and 𝑺̂2(𝑡) , is not 

guaranteed to equal the spectrum of the mixture. Therefore, a 

masking layer is added to the network, which produces two 

final outputs shown in the following equations: 

 
𝑺̃1(𝑡) =

|𝑺̂1(𝑡)|

|𝑺̂1(𝑡)| + |𝑺̂2(𝑡)|
⊙ 𝒀(𝑡) (8) 

 𝑺̃2(𝑡) =
|𝑺̂2(𝑡)|

|𝑺̂1(𝑡)| + |𝑺̂2(𝑡)|
⊙ 𝒀(𝑡) (9) 

where 𝒀(𝑡) denotes the mixture spectrum at t. This amounts to 

a signal approximation training target introduced in Section 

III.I. Both binary and ratio masking are found to be effective. 

In addition, discriminative training is applied to maximize the 

 
Figure 11. Diagram of a reverberation time aware DNN for speech dereverberation (redrawn from [190]). 
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difference between one speaker and the estimated version of 

the other. During training, the following cost is minimized:  

 1

2
∑(‖𝑺1(𝑡) − 𝑺̃1(𝑡)‖

2
+ ‖𝑺2(𝑡) − 𝑺̃2(𝑡)‖

2

𝑡

− 𝛾‖𝑺1(𝑡) − 𝑺̃2(𝑡)‖
2

− 𝛾‖𝑺2(𝑡) − 𝑺̃1(𝑡)‖
2

) 

(10) 

where 𝑺1(𝑡)  and 𝑺2(𝑡)  denote the ground truth spectra for 

Speaker 1 and Speaker 2, respectively, and 𝛾  is a tunable 

parameter. Experimental results have shown that both the 

masking layer and discriminative training improve speaker 

separation [82].  

A few months later, Du et al. [38] appeared to have 

independently proposed a DNN for speaker separation similar 

to [81]. In this study [38], the DNN is trained to estimate the 

log power spectrum of the target speaker from that of a 

cochannel mixture. In a different paper [162], they trained a 

DNN to map a cochannel signal to the spectrum of the target 

speaker as well as the spectrum of an interfering speaker, as 

illustrated in Fig. 12 (see [37] for an extended version). A 

notable extension compared to [81] is that these papers also 

address the situation where only the target speaker is the same 

between training and testing, while interfering speakers are 

different between training and testing.  

In speaker separation, if the underlying speakers are not 

allowed to change from training to testing, this is the speaker-

dependent situation. If interfering speakers are allowed to 

change, but the target speaker is fixed, this is called target-

dependent speaker separation. In the least constrained case 

where none of the speakers are required to be the same 

between training and testing, this is called speaker-

independent. From this perspective, Huang et al.’s approach is 

speaker dependent [81] [82] and the studies in [38] [162] deal 

with both speaker and target dependent separation. Their way 

of relaxing the constraint on interfering speakers is simply to 

train with cochannel mixtures of the target speaker and many 

interferers.  

Zhang and Wang proposed a deep ensemble network to 

address speaker-dependent as well as target-dependent 

separation [206]. They employ multi-context networks to 

integrate temporal information at different resolutions. An 

ensemble is constructed by stacking multiple modules, each 

performing multi-context masking or mapping. Several 

training targets were examined in this study. For speaker-

dependent separation, signal approximation is shown to be 

most effective; for target-dependent separation, a combination 

of ratio masking and signal approximation is most effective. 

Furthermore, the performance of target-dependent separation 

is close to that of speaker-dependent separation. Recently, 

Wang et al. [174] took a step further towards relaxing speaker 

dependency in talker separation. Their approach clusters each 
speaker into one of the four clusters (two for male and two for 

female), and then trains a DNN-based gender mixture detector 

to determine the clusters of the two underlying speakers in a 

mixture. Although trained on a subset of speakers in each 

cluster, their evaluation results show that the speaker 

separation approach works well for the other untrained 

speakers in each cluster; in other words, this speaker 

separation approach exhibits a degree of speaker 

independency.  

Healy et al. [63] have recently used a DNN for speaker-

dependent cochannel separation and performed speech 

intelligibility evaluation of the DNN with both HI and NH 

listeners. The DNN was trained to estimate the IRM and its 

complement, corresponding to the target talker and interfering 

talker. Compared to earlier DNN-based cochannel separation 

studies, the algorithm in [63] uses a diverse set of features and 

predicts multiple IRM frames, resulting in better separation. 

The intelligibility results are shown in Figure 13.  For the HI 

 

Figure 13. Mean intelligibility scores and standard errors for HI and NH subjects listening to target sentences mixed with 

interfering sentences and separated target sentences (from [63]). Percent correct results are given at four different target-to-

interferer ratios. 

Speaker 1      Speaker 2 

 

Figure 12. Diagram of DNN based two-speaker separation. 
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group, intelligibility improvement from DNN-based 

separation is 42.5, 49.2, and 58.7 percentage points at -3 dB, -

6 dB, and -9 dB target-to-interferer ratio (TIR), respectively. 

For the NH group, there are statistically significant 

improvements, but to a smaller extent. It is remarkable that the 

large intelligibility improvements obtained by HI listeners 

allow them to perform equivalently to NH listeners (without 

algorithm help) at the common TIRs of -6 and -9 dB. 

Speaker-independent separation can be treated as 

unsupervised clustering where T-F units are clustered into 

distinct classes dominated by individual speakers [6] [79]. 

Clustering is a flexible framework in terms of the number of 

speakers to separate, but it does not benefit as much from 

discriminative information fully utilized in supervised training. 

Hershey et al. were the first to address speaker-independent 

multi-talker separation in the DNN framework [69]. Their 

approach, called deep clustering, combines DNN based feature 

learning and spectral clustering. With a ground truth partition 

of T-F units, the affinity matrix 𝐴 can be computed as: 

 𝑨 = 𝒀𝒀𝑇 (11) 

where 𝒀 is the indicator matrix built from the IBM. 𝑌𝑖,𝑐 is set 

to 1 if unit 𝑖 belongs to (or dominated by) speaker 𝑐, and 0 

otherwise. The DNN is trained to embed each T-F unit. The 

estimated affinity matrix 𝑨̂  can be derived from the 

embeddings. The DNN learns to output similar embeddings 

for T-F units originating from the same speaker by minimizing 

the following cost function: 

 𝐶𝒀(𝑽) =  ‖𝑨̂ − 𝑨‖
𝐹

2
= ‖𝑽𝑽𝑇 − 𝒀𝒀𝑇‖𝐹

2  (12) 

 

where 𝑽 is an embedding matrix for T-F units. Each row of 𝑽 

represents one T-F unit. ‖ ∙ ‖𝐹
2  denotes the squared Frobenius 

norm. Low rank formulation can be applied to efficiently 

calculate the cost function and its derivatives. During 

inference, a mixture is segmented and the embedding matrix 𝑽 

is computed for each segment. Then, the embedding matrices 

of all segments are concatenated. Finally, the K-means 

algorithm is applied to cluster the T-F units of all the segments 

into speaker clusters. Segment-level clustering is more 

accurate than utterance-level clustering, but with clustering 

results only for individual segments, the problem of sequential 

organization has to be addressed. Deep clustering is shown to 

produce high quality speaker separation, significantly better 

than a CASA method [79] and an NMF method for speaker-

independent separation. 

A recent extension of deep clustering is the deep attractor 

network [25], which also learns high-dimensional embeddings 

for T-F units. Unlike deep clustering, this deep network 

creates attractor points akin to cluster centers in order to pull 

T-F units dominated by different speakers to their 

corresponding attractors. Speaker separation is then performed 

as mask estimation by comparing embedded points and each 

attractor. The results in [25] show that the deep attractor 

network yields better results than deep clustering.  

While clustering-based methods naturally lead to speaker-

independent models, DNN based masking/mapping methods 

tie each output of the DNN to a specific speaker, and lead to 

speaker-dependent models. For example, mapping based 

methods minimize the following cost function: 

 𝐽 = ∑‖|𝑺̃𝑘(𝑡)| − |𝑺𝑘(𝑡)|‖
2

 

𝑘,𝑡

 
(13) 

where |𝑺̃𝑘(𝑡)| and |𝑺𝑘(𝑡)| denote estimated and actual spectral 

magnitudes for speaker k, respectively, and t denotes time 

frame. To untie DNN outputs from speakers and train a 

speaker-independent model using a masking or mapping 

technique, Yu et al. [202] recently proposed permutation-

invariant training, which is shown in Fig. 14. For two-speaker 

separation, a DNN is trained to output two masks, each of 

which is applied to noisy speech to produce a source estimate. 

During DNN training, the cost function is dynamically 

calculated. If we assign each output to a reference speaker 

|𝑺𝑘(𝑡)|  in the training data, there are two possible 

assignments, each of which is associated with an MSE. The 

assignment with the lower MSE is chosen and the DNN is 

trained to minimize the corresponding MSE. During both 

training and inference, the DNN takes a segment or multiple 

frames of features, and estimates two sources for the segment. 

Since the two outputs of the DNN are not tied to any speaker, 

the same speaker may switch from one output to another 

 
Figure 14. Two-talker separation with permutation-invariant training (from [202]). 
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across consecutive segments. Therefore, the estimated 

segment-level sources need to be sequentially organized 

unless segments are as long as utterances. Although much 

simpler, speaker separation results are shown to match those 

obtained with deep clustering [202] [101]. 
 

It should be noted that, although speaker separation 

evaluations typically focus on two-speaker mixtures, the 

separation framework can be generalized to separating more 

than two talkers. For example, the diagrams in both Figs. 12 

and 14 can be straightforwardly extended to handle, say, three-

talker mixtures. One can also train target-independent models 

using multi-speaker mixtures. For speaker-independent 

separation, deep clustering [69] and permutation-invariant 

training [101] are both formulated for multi-talker mixtures 

and evaluated on such data. Scaling deep clustering from 

mixtures of two speakers to more than two is more 

straightforward than for scaling permutation-invariant 

training.  

An insight from the body of work overviewed in this 

speaker separation subsection is that a DNN model trained 

with many pairs of different speakers is able to separate a pair 

of speakers never included in training, a case of speaker 

independent separation, but only at the frame level. For 

speaker-independent separation, the key issue is how to group 

well-separated speech signals at individual frames (or 

segments) across time. This is precisely the issue of sequential 

organization, which is much investigated in CASA [172]. 

Permutation-invariant training may be considered as imposing 

sequential grouping constraints during DNN training. On the 

other hand, typical CASA methods utilize pitch contours, 

vocal tract characteristics, rhythm or prosody, and even 

common spatial direction when multiple sensors are available, 

which do not usually involve supervised learning. It seems to 

us that integrating traditional CASA techniques and deep 

learning is a fertile ground for future research.  
 

VI. ARRAY SEPARATION ALGORITHMS 

An array of microphones provides multiple monaural 

recordings, which contain information indicative of the spatial 

origin of a sound source. When sound sources are spatially 

separated, with sensor array inputs one may localize sound 

sources and then extract the source from the target location or 

direction. Traditional approaches to source separation based 

on spatial information include beamforming, as mentioned in 

Sect. I, and independent component analysis [8] [85] [3]. 

Sound localization and location-based grouping are among the 

classic topics in auditory perception and CASA [12] [15] 

[172].  

A.  Separation Based on Spatial Feature Extraction 

The first study in supervised speech segregation was 

conducted by Roman et al. [141] in the binaural domain. This 

study performs supervised classification to estimate the IBM 

based on two binaural features: ITD and ILD, both extracted 

from individual T-F unit pairs from the left-ear and right-ear 

cochleagram. Note that, in this case, the IBM is defined on the 

noisy speech at a single ear (reference channel). Classification 

is based on maximum a posteriori (MAP) probability where 

the likelihood is given by a density estimation technique. 

Another classic two-sensor separation technique, DUET 

(Degenerate Unmixing Estimation Technique), was published 

by Yilmaz and Rickard [199] at about the same time. DUET is 

based on unsupervised clustering, and the spatial features used 

are phase and amplitude differences between the two 

microphones. The contrast between classification and 

clustering in these studies is a persistent theme and anticipates 

similar contrasts in later studies, e.g. binary masking [71] vs. 

clustering [72] for beamforming (see Sect. VI.B), and deep 

clustering [69] versus mask estimation [101] for talker-

independent speaker separation (see Sect. V.D).  

The use of spatial information afforded by an array as 
features in deep learning is a straightforward extension of the 

earlier use of DNN in monaural separation; one simply 

substitutes spatial features for monaural features. Indeed, this 

way of leveraging spatial information provides a natural 

framework for integrating monaural and spatial features for 

source separation, which is a point worth emphasizing as 

traditional research tends to pursue array separation without 

considering monaural grouping. It is worth noting that human 

auditory scene analysis integrates monaural and binaural 

analysis in a seamless fashion, taking advantage of whatever 

discriminant information existing in a particular environment 

[15] [172] [30].   

The first study to employ DNN for binaural separation was 

published by Jiang et al. [90]. In this study, the signals from 

two ears (or microphones) are passed to two corresponding 

auditory filterbanks. ITD and ILD features are extracted from 

T-F unit pairs and sent to a subband DNN for IBM estimation, 

one DNN for each frequency channel. In addition, a monaural 

feature (GFCC, see Table 1) is extracted from the left-ear 

input. A number of conclusions can be drawn from this study. 

Perhaps most important is the observation that the trained 
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Figure 15. Schematic diagram of a binaural separation algorithm (from [208]). 
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DNN generalizes well to untrained spatial configurations of 

sound sources. A spatial configuration refers to a specific 

placement of sound sources and sensors in an acoustic 

environment. This is key to the use of supervised learning as 

there are infinite configurations and a training set cannot 

enumerate various configurations. DNN based binaural 

separation is found to generalize well to RIRs and 

reverberation times. It is also observed that the incorporation 

of the monaural feature improves separation performance, 

especially when the target and interfering sources are co-

located or close to each other.  

Araki et al. [2] subsequently employed a DNN for spectral 

mapping that includes the spatial features of ILD, interaural 

phase difference (IPD), and enhanced features with an initial 

mask derived from location information, in addition to 

monaural input. Their evaluation with ASR related metrics 

shows that the best enhancement performance is obtained with 

a combination of monaural and enhanced features. Fan et al. 

[43] proposed a spectral mapping approach utilizing both 

binaural and monaural inputs. For the binaural features, this 

study uses subband ILDs, which are found to be more 

effective than fullband ILDs. These features are then 

concatenated with the left-ear’s frame-level log power spectra 

to form the input to the DNN, which is trained to map to the 

spectrum of clean speech. A quantitative comparison with [90] 
shows that their system produces better PESQ scores for 

separated speech but similar STOI numbers.  

A more sophisticated binaural separation algorithm was 

proposed by Yu et al. [203]. The spatial features used include 

IPD, ILD, and a so-called mixing vector that is a form of 

combined STFT values of a unit pair. The DNN used is a 

DAE, first trained unsupervisedly as autoencoders that are 

subsequently stacked into a DNN subject to supervised fine-

tuning. Extracted spatial features are first mapped to high-

level features indicating spatial directions via unsupervised 

DAE training. For separation, a classifier is trained to map 

high-level spatial features to a discretized range of source 

directions. This algorithm operates over subbands, each 

covering a block of consecutive frequency channels.  

Recently, Zhang and Wang [208] developed a DNN for 

IRM estimation with a more sophisticated set of spatial and 

spectral features. Their algorithm is illustrated in Fig. 15, 

where the left-ear and right-ear inputs are fed to two different 

modules for spectral (monaural) and spatial (binaural) 

analysis. Instead of monaural analysis on a single ear [90] 

[43], spectral analysis in [208] is conducted on the output of a 

fixed beamformer, which itself removes some background 

inference, by extracting a complementary set of monaural 

features (see Sect. IV). For spatial analysis, ITD in the form of 

a cross-correlation function, and ILD are extracted. The 

spectral and spatial features are concatenated to form the input 

to a DNN for IRM estimation at the frame level. This 

algorithm is shown to produce substantially better separation 

results in reverberant multisource environments than 

conventional beamformers, including MVDR (Minimum 

Variance Distortionless Response) and MWF (Multichannel 

Wiener Filter). An interesting observation from their analysis 

is that much of the benefit of using a beamformer prior to 

spectral feature extraction can be obtained simply by 

concatenating monaural features from the two ears. 

Although the above methods are all binaural, involving two 

sensors, the extension from two sensors to an array with N 

sensors, with N > 2, is usually straightforward. Take the 

system in Fig. 15, for instance. With N microphones, spectral 

feature extraction requires no change as traditional 

beamformers are already formulated for an arbitrary number 

of microphones. For spatial feature extraction, the feature 

space needs to be expanded when more than two sensors are 

available, either by designating one microphone as a reference 
for deriving a set of “binaural” features or by considering a 

matrix of all sensor pairs in a correlation or covariance 

analysis. The output is a T-F mask or spectral envelope 

corresponding to target speech, which may be viewed as 

monaural.  Since traditional beamforming with an array also 

produces a “monaural” output, corresponding to the target 

source, T-F masking based on spatial features may be 

considered beamforming or, more accurately, nonlinear 

beamforming [125] as opposed to traditional beamforming 

that is linear.  

B.  Time-frequency Masking for Beamforming 

Beamforming, as the name would suggest, tunes in the 

signals from a zone of arrival angles centered at a given angle, 

while tuning out the signals outside the zone. To be 

applicable, a beamformer needs to know the target direction to 

steer the beamformer. Such a steering vector is typically 

supplied by estimating the direction-of-arrival (DOA) of the 

target source, or more broadly sound localization. In 

 

Figure 16.  Diagram of a DNN based array source separation method  (from [133]). 
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reverberant, multi-source environments, localizing the target 

sound is far from trivial. It is well recognized in CASA that 

localization and separation are two closely related functions 

([172], Chapter 5). For human audition, evidence suggests that 

sound localization largely depends on source separation [60] 

[30].  

Fueled by the CHiME-3 challenge for robust ASR, two 

independent studies made the first use of DNN based 

monaural speech enhancement in conjunction with 

conventional beamforming, both published in ICASSP 2016 

[71] [72]. The CHiME-3 challenge provides noisy speech data 

from a single speaker recorded by 6 microphones mounted on 

a tablet [7]. In these two studies, monaural speech separation 

provides the basis for computing the steering vector, cleverly 

bypassing two tasks that would have been required via the 

DOA estimation: localizing multiple sound sources and 

selecting the target (speech) source. To explain their idea, let 

us first describe MVDR as a representative beamformer.  

MVDR aims to minimize the noise energy from nontarget 

directions while imposing linear constraints to maintain the 

energy from the target direction [45]. The captured signals of 

an array in the STFT domain can be written as: 

 𝐲(𝑡, 𝑓) = 𝐜(𝑓)𝑠(𝑡, 𝑓) + 𝐧(𝑡, 𝑓) (14) 

where 𝐲(𝑡, 𝑓) and 𝐧(𝑡, 𝑓) denote the STFT spatial vectors of 

the noisy speech signal and noise at frame 𝑡 and frequency 𝑓, 

respectively, and 𝑠(𝑡, 𝑓)  denotes the STFT of the speech 

source. The term 𝐜(𝑓)𝑠(𝑡, 𝑓)  denotes the received speech 

signal by the array and 𝐜(𝑓) is the steering vector of the array. 

At frequency f, the MVDR beamformer identifies a weight 

vector 𝐰(𝑓) that minimizes the average output power of the 

beamformer while maintaining the energy along the look 

(target) direction. Omitting  𝑓  for brevity, this optimization 

problem can be formulated as 

 
𝐰𝑜𝑝𝑡 = argmin

𝐰
{𝐰𝐻𝚽𝑛𝐰} ,     subject to 𝐰𝐻𝐜 = 1 

(15) 

where 𝐻 denotes the conjugate transpose and 𝚽𝑛 is the spatial 

covariance matrix of the noise. Note that the minimization of 

the output power is equivalent to the minimization of the noise 

power. The solution to this quadratic optimization problem is: 

 𝐰opt =
𝚽𝑛

−1𝐜

𝐜𝐻𝚽𝑛
−1𝐜

  (16) 

The enhanced speech signal is given by 

 𝑠̃(𝑡) = 𝐰opt
𝐻 𝐲(𝑡) (17) 

Hence, the accurate estimation of 𝐜  and 𝚽𝑛  is key to 

MVDR beamforming. Furthermore, 𝐜  corresponds to the 

principal component of 𝚽𝑥  (the eigenvector with the largest 

eigenvalue), the spatial covariance matrix of speech. With 

speech and noise uncorrelated, we have 

 𝚽𝑥 = 𝚽𝑦 − 𝚽𝑛 (18) 

Therefore, a noise estimate is crucial for beamforming 

performance, just like it is for traditional speech enhancement.  

In [71], an RNN with bidirectional LSTM is used for IBM 

estimation. A common neural network is trained monaurally 

on the data from each of the sensors. Then the trained network 

is used to produce a binary mask for each microphone 

recording, and the multiple masks are combined into one mask 

with a median operation. The single mask is used to estimate 

the speech and noise covariance matrix, from which 

beamformer coefficients are obtained. Their results show that 

MVDR does not work as well as the GEV (generalized 

eigenvector) beamformer.  In [72], a spatial clustering based 

approach was proposed to compute a ratio mask. This 

approach uses a complex-domain GMM (cGMM) to describe 

the distribution of the T-F units dominated by noise and 

another cGMM to describe that of the units with both speech 

and noise. After parameter estimation, the two cGMMs are 

used for calculating the covariance matrices of noisy speech 

and noise, which are fed to an MVDR beamformer for speech 

separation. Both of these algorithms perform very well, and 

Higuchi et al.’s method was used in the best performing 

system in the CHiME-3 challenge [200]. A similar approach, 

i.e. DNN-based IRM estimation combined with a beamformer, 

is also behind the winning system in the most recent CHiME-4 

challenge [36]. 

A method different from the above two studies was given 

by Nugraha et al. [133], who perform array source separation 

using DNN for monaural separation and a complex 

multivariate Gaussian distribution to model spatial 

information. The DNN in this study is used to model source 

spectra, or spectral mapping. The power spectral densities 

(PSDs) and spatial covariance matrices of speech and noise 

are estimated and updated iteratively. Figure 16 illustrates the 

processing pipeline. First, array signals are realigned on the 

basis of time difference of arrival (TDOA) and averaged to 

form a monaural signal. A DNN is then used to produce an 

initial estimate of noise and speech PSDs. During the iterative 

estimation of PSDs and spatial covariance matrices, DNNs are 

used to further improve the PSDs estimated by a multichannel 

 

Figure 17. MVDR beamformer with monaural mask estimation (from [42]). 
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Wiener filter. Finally, the estimated speech signals from 

multiple microphones are averaged to produce a single speech 

estimate for ASR evaluation. A number of design choices 

were examined in this study, and their algorithm yields better 

separation and ASR results than DNN based monaural 

separation and an array version of NMF-based separation.  

The success of Higuchi et al. [72] and Heymann et al. [71] 

in the CHiME-3 challenge by using DNN estimated masks for 

beamforming has motivated many recent studies, exploring 

different ways of integrating T-F masking and beamforming. 

Erdogan et al. [42] trained an RNN for monaural speech 

enhancement, from which a ratio mask is computed in order to 

provide coefficients for an MVDR beamformer. As illustrated 

in Fig. 17, a ratio mask is first estimated for each microphone. 

Then multiple masks from an array are combined into one 

mask by a maximum operator, which is found to produce 

better results than using multiple masks without combination. 

It should be noted that their ASR results on the CHiME-3 data 

are not compelling. Instead of fixed beamformers like MVDR, 

beamforming coefficients can be dynamically predicted by a 

DNN. Li et al. [108] employed a deep network to predict 

spatial filters from array inputs of noisy speech for adaptive 

beamforming. Waveform signals are sent to a shared RNN, 

whose output is sent to two separate RNNs to predict 

beamforming filters for two microphones. 
Zhang et al. [209] trained a DNN for IRM estimation from a 

complementary set of monaural features, and then combined 

multiple ratio masks from an array into a single one with a 

maximum operator. The ratio mask is used for calculating the 

noise spatial covariance matrix at time t for an MVDR 

beamformer as follows, 

 𝚽𝑛(𝑡, 𝑓) =
1

∑ (1 − 𝑅𝑀(𝑙, 𝑓))𝑡+𝐿
𝑙=𝑡−𝐿

                                

                   × ∑ (1 − 𝑅𝑀(𝑙, 𝑓))𝐲(𝑙, 𝑓)𝐲(𝑙, 𝑓)𝐻

𝑡+𝐿

𝑙=𝑡−𝐿

 
(19) 

where 𝑅𝑀(𝑙, 𝑓) denotes the estimated IRM from the DNN at 

frame l and frequency f.  An element of the noise covariance 

matrix is calculated per frame by integrating a window of 

neighboring 2L+1 frames. They find this adaptive way of 

estimating the noise covariance matrix to perform much better 

than estimation over the entire utterance or a signal segment. 

An enhanced speech signal from the beamformer is then fed to 

the DNN to refine the IRM estimate, and mask estimation and 

beamforming iterate several times to produce the final output. 

Their 5.05 WER (word error rate) on the CHiME-3 real 

evaluation data represents a 13.34% relative improvement 

over the previous best [200]. Independently, Xiao et al. [193] 

also proposed to iterate ratio masking and beamforming. They 

use an RNN for estimating a speech mask and a noise mask. 

Mask refinement is based on an ASR loss, in order to directly 

benefit ASR performance. They showed that this approach 

leads to a considerable WER reduction over the use of a 

conventional MVDR, although recognition accuracy is not as 

high as in [200].  

Other related studies include Pfeifenberger et al. [139], 

who use the cosine distance between the principal components 

of consecutive frames of noisy speech as the feature for DNN 

mask estimation. Meng et al.  [121] use RNNs for adaptive 

estimation of beamformer coefficients. Their ASR results on 

the CHiME-3 data are better than the baseline scores, but are 

far from the best scores. Nakatani et al. [129] integrate DNN 

mask estimation and cGMM clustering based estimation to 

further improve the quality of mask estimates. Their results on 

the CHiME-3 data improve over those obtained from RNN or 

cGMM generated masks.  

VII.DISCUSSION AND CONCLUSION 

This paper has provided a comprehensive overview of DNN 

based supervised speech separation. We have summarized key 

components of supervised separation, i.e. learning machines, 

training targets, and acoustic features, explained representative 

algorithms, and reviewed a large number of related studies. 

With the formulation of the separation problem as supervised 

learning, DNN based separation over a short few years has 

greatly elevated the state-of-the-art for a wide range of speech 

separation tasks, including monaural speech enhancement, 

speech dereverberation, and speaker separation, as well as 

array speech separation. This rapid advance will likely 

continue with a tighter integration of domain knowledge and 

the data-driven framework and the progress in deep learning 

itself. 

Below we discuss several conceptual issues pertinent to this 

overview.  

A.  Features vs. Learning Machines 

As discussed in Sect. IV, features are important for speech 

separation. However, a main appeal of deep learning is to 

learn appropriate features for a task, rather than to design such 

features. So is there a role for feature extraction in the era of 

deep learning? We believe the answer is yes. The so-called no-

free-lunch theorem [189] dictates that no learning algorithm, 

DNN included, achieves superior performance in all tasks. 

Aside from theoretical arguments, feature extraction is a way 

of imparting knowledge from a problem domain and it stands 

to reason that it is useful to incorporate domain knowledge 

this way (see [176] for a recent example). For instance, the 

success of CNN in visual pattern recognition is partly due to 

the use of shared weights and pooling (sampling) layers in its 

architecture that helps to build a representation invariant to 

small variations of feature positions [10].  

It is possible to learn useful features for a problem domain, 

but doing so may not be computationally efficient, particularly 

when certain features are known to be discriminative through 

domain research. Take pitch, for example. Much research in 

auditory scene analysis shows that pitch is a primary cue for 

auditory organization [15] [30], and research in CASA 

demonstrates that pitch alone can go a long way in separating 

voiced speech [78]. Perhaps a DNN can be trained to 

“discover” harmonicity as a prominent feature, and there is 

some hint at this from a recent study [24], but extracting pitch 

as input features seems like the most straightforward way of 

incorporating pitch in speech separation.  

The above discussion is not meant to discount the 

importance of learning machines, as this overview has made it 

abundantly clear, but to argue for the relevance of feature 

extraction despite the power of deep learning. As mentioned in 

Sect. V.A, convolutional layers in a CNN amount to feature 
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extraction. Although CNN weights are trained, the use of a 

particular CNN architecture reflects design choices of its user.  

B.  Time-frequency Domain vs. Time Domain 

The vast majority of supervised speech separation studies 

are conducted in the T-F domain as reflected in the various 

training targets reviewed in Sect. III. Alternatively, speech 

separation can be conducted in the time domain without 

recourse to a frequency representation. As pointed out in Sect. 

V.A, through temporal mapping both magnitude and phase 

can potentially be cleaned at once. End-to-end separation 

represents an emergent trend along with the use of CNNs and 

GANs.  

A few comments are in order. First, temporal mapping is a 

welcome addition to the list of supervised separation 

approaches and provides a unique perspective to phase 

enhancement [50] [103]. Second, the same signal can be 

transformed back and forth between its time domain 

representation and its T-F domain representation. Third, the 

human auditory system has a frequency dimension at the 

beginning of the auditory pathway, i.e. at the cochlea. It is 

interesting to note Licklider’s classic duplex theory of pitch 

perception, postulating two processes of pitch analysis: a 

spatial process corresponding to the frequency dimension in 

the cochlea and a temporal process corresponding to the 

temporal response of each frequency channel [111]. 
Computational models for pitch estimation fall into three 

categories: spectral, temporal, and spectrotemporal approaches 

[33].  In this sense, a cochleagram, with the individual 

responses of a cochlear filterbank [118] [172], is a duplex 

representation.  

C.  What’s the Target? 

When multiple sounds are present in the acoustic 

environment, which should be treated as the target sound at a 

particular time? The definition of ideal masks presumes that 

the target source is known, which is often the case in speech 

separation applications. For speech enhancement, the speech 

signal is considered the target while nonspeech signals are 

considered the interference. The situation becomes tricky for 

multi-speaker separation. In general, this is the issue of 

auditory attention and intention. It is a complicated issue as 

what is attended to shifts from one moment to the next even 

with the same input scene, and does not have to be a speech 

signal. There are, however, practical solutions. For example, 

directional hearing aids get around this issue by assuming that 

the target lies in the look direction, i.e. benefiting from vision 

[170] [35]. With sources separated, there are other reasonable 

alternatives for target definition, e.g. the loudest source, the 

previously attended one (i.e. tracking), or the most familiar (as 

in the multi-speaker case). A full account, however, would 

require a sophistical model of auditory attention (see [172] 

[118]).   

D.  What Does a Solution to the Cocktail Party Problem 

Look Like? 

CASA defines the solution to the cocktail party problem as 

a system that achieves human separation performance in all 

listening conditions ([172], p.28). But how to actually 

compare the separation performance by a machine and that by 

a human listener? Perhaps a straightforward way would be 

compare ASR scores and human speech intelligibility scores 

in various listening conditions. This is a tall order as ASR 

performance still falls short in realistic conditions despite 

tremendous recent advances thanks to deep learning. A 

drawback with ASR evaluation is the dependency on ASR 

with all its peculiarities. 

 Here we suggest a different, concrete measure: a solution 

to the cocktail party is a separation system that elevates 

speech intelligibility of hearing-impaired listeners to the level 

of normal-hearing listeners in all listening situations. Not as 

broad as defined in CASA, but this definition has the benefit 

that it is tightly linked to a primary driver for speech 

separation research, namely, to eliminate the speech 

understanding handicap of millions of listeners with impaired 

hearing [171]. By this definition, the DNN based speech 

enhancement described above has met the criterion in limited 

conditions (see Fig. 13 for one example), but clearly not in all 

conditions. Versatility is the hallmark of human intelligence, 

and the primary challenge facing supervised speech separation 

research today.  
 

Before closing, we point out that the use of supervised 

learning and DNN in signal processing goes beyond speech 

separation, and automatic speech and speaker recognition. The 
related topics include multipitch tracking [80] [56], voice 

activity detection [207], and even a task as basic in signal 

processing as SNR estimation [134]. No matter the task, once 

it is formulated as a data-driven problem, advances will likely 

ensue with the use of various deep learning models and 

suitably constructed training sets; it should also be mentioned 

that these advances come at the expense of high computational 

complexity involved in the training process and often in 

operating a trained DNN model. A considerable benefit of 

treating signal processing as learning is that signal processing 

can ride on the progress of machine learning, a rapidly 

advancing field. 

Finally, we remark that human ability to solve the cocktail 

party problem appears to have much to do with our extensive 

exposure to various noisy environments (see also [24]). 

Research indicates that children have poorer ability to 

recognize speech in noise than adults [54] [92], and musicians 

are better at perceiving noisy speech than non-musicians [135] 

presumably due to musicians’ long exposure to polyphonic 

signals. Relative to monolingual speakers, bilinguals have a 

deficit when it comes to speech perception in noise, although 

the two groups are similarly proficient in quiet [159]. All these 

effects support the notion that extensive training (experience) 

is part of the reason for the remarkable robustness of the 

normal auditory system to acoustic interference.  
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