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Supervised speech segregation has been recently shown to improve human speech intelligibility in

noise, when trained and tested on similar noises. However, a major challenge involves the ability to

generalize to entirely novel noises. Such generalization would enable hearing aid and cochlear

implant users to improve speech intelligibility in unknown noisy environments. This challenge is

addressed in the current study through large-scale training. Specifically, a deep neural network

(DNN) was trained on 10 000 noises to estimate the ideal ratio mask, and then employed to separate

sentences from completely new noises (cafeteria and babble) at several signal-to-noise ratios

(SNRs). Although the DNN was trained at the fixed SNR of � 2 dB, testing using hearing-impaired

listeners demonstrated that speech intelligibility increased substantially following speech segrega-

tion using the novel noises and unmatched SNR conditions of 0 dB and 5 dB. Sentence intelligibil-

ity benefit was also observed for normal-hearing listeners in most noisy conditions. The results

indicate that DNN-based supervised speech segregation with large-scale training is a very promis-

ing approach for generalization to new acoustic environments.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4948445]
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I. INTRODUCTION

A primary manifest of hearing loss, which affects

roughly 10% of the population, is reduced speech intelligi-

bility in background noises, particularly, nonstationary

noises (Moore, 2007; Dillon, 2012). Compressive amplifica-

tion implemented in modern hearing aids offers little help as

both speech and noise are amplified. The lack of speech

intelligibility improvement in noise is a main barrier to hear-

ing aid adoption (Abrams and Kihm, 2015). As a result,

noise reduction is considered one of the biggest challenges

in hearing aid design.

Extensive effort has been made in speech and signal

processing over the past several decades to improve speech

intelligibility in background noise for hearing-impaired (HI)

listeners. A main approach involves speech enhancement,

which is a class of monaural (single-microphone) speech seg-

regation algorithms, including spectral subtraction and mean-

square error estimation (Loizou, 2013). Speech enhancement

algorithms are capable of improving signal-to-noise ratio

(SNR) and speech quality, but they fail to deliver speech intel-

ligibility benefit (Luts et al., 2010; Loizou, 2013).

Recently, supervised speech segregation has received

increasing attention. In its simplest form, supervised segre-

gation estimates an ideal time-frequency (T-F) mask of a

noisy mixture using a trained classifier, typically, a deep

neural network (DNN). An ideal T-F mask indicates

whether, or to what extent, each T-F unit is dominated by

target speech. A binary decision leads to the ideal binary

mask (IBM; Hu and Wang, 2001; Wang, 2005), whereas a

ratio decision leads to the ideal ratio mask (IRM; Srinivasan

et al., 2006; Narayanan and Wang, 2013; Hummersone

et al., 2014; Wang et al., 2014). Unlike traditional speech

enhancement, supervised segregation does not make explicit

statistical assumptions about the underlying speech or noise

signal, but rather learns data distributions from a training set.

DNN-based IBM and IRM estimators have been demon-

strated to improve intelligibility of noisy speech by HI listen-

ers (Healy et al., 2013; Healy et al., 2015). A critical issue

associated with this work involves the ability to generalize

to unseen noisy conditions—those not employed during

training. In the context of supervised speech segregation,

generalization to unseen noisy environments is key. In Kim

et al. (2009), a Gaussian mixture model-based IBM classifier

was trained and tested on the same brief noise segments,

with very limited generalizability (May and Dau, 2014).

Healy et al. (2013) used random cuts from longer-duration

noise segments for training and testing in order to reduce
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dependency on the specific characteristics of the training

conditions. However, both training and test segments were

drawn from the same overall noise segments, and generaliz-

ability was still limited.

A more recent study (Healy et al., 2015) took this issue

a step further by dividing 10-min nonstationary noises into

two non-overlapping time portions with the first part used

for training and the second part for testing. Using different

portions of a noise for training and testing is considered an

important requirement for evaluating supervised segregation

algorithms (May and Dau, 2014). With relatively long noise

segments for training and a noise perturbation technique

(Chen et al., 2016) to further expand the set of training noise

samples, this DNN-based IRM estimator improved speech

intelligibility for HI listeners in novel noise segments.

However, the mask-estimation algorithm was trained and

tested using the same noise type. In addition, the SNR was

the same for both training and testing, which necessitated

training to be repeated at each SNR tested.

The aim of the current study was to develop and test a

speech segregation algorithm that can generalize to com-

pletely new noises, as well as to untrained SNRs. As the per-

formance of supervised learning is predicated upon the

information contained in a training set, the approach

employed here for broad generalization was to enlarge the

training set by including various acoustic conditions (see

Wang and Wang, 2013). This conceptually simple approach,

often referred to as multi-condition training, is widely used

in automatic speech recognition (ASR) and robust ASR. In

the current study, large-scale multi-condition training was

employed for DNN-based IRM estimation. The training set

included 10 000 noises, which exposed the IRM estimator to

a large variety of noisy environments. The trained DNN was

then used to segregate speech from two noises not included

in those used for training: multi-talker babble and cafeteria

noise. Further, training was completed at a single SNR,

whereas testing was completed at multiple SNRs. Finally,

the performance of the algorithm was evaluated using HI

and normal-hearing (NH) listeners.

II. METHOD

A. Stimuli

The stimuli included Institute of Electrical and

Electronics Engineers (IEEE) sentences (IEEE, 1969). They

were spoken by one male talker and digitized at 44.1 kHz

with 16-bit resolution. Each sentence in this corpus con-

tained five scoring keywords. The background noises, also

employed by Healy et al. (2015), were employed here to test

algorithm performance. These included 20-talker babble

(both male and female voices) and cafeteria noise, both from

an Auditec CD (St. Louis, MO, www.auditec.com). The caf-

eteria noise consisted of three overdubbed recordings made

in a hospital employee cafeteria. SNRs employed to test

algorithm performance were selected to obtain scores for

unprocessed sentences in noise below and above 50%. These

were 0 and þ 5 dB for the HI subjects and � 2 and � 5 dB

for the NH subjects. Stimuli were downsampled to 16 kHz

prior to processing.

Of the total of 720 IEEE sentences, 160 were arbitrarily

selected to test algorithm performance. The remaining 560

IEEE sentences were employed for algorithm training, as

described in Sec. II B. Thus, as in previous works (Healy

et al., 2013; Healy et al., 2015), sentences employed for

algorithm testing were not employed for training. Test stim-

uli were created by mixing each test sentence with a segment

of noise randomly selected from the final 2 min of the babble

or cafeteria noise recording. This method follows that of

Healy et al. (2015), hence, facilitating detailed comparison.

An unprocessed speech-in-noise condition consisted of test

sentences mixed with randomly selected segments of babble

or cafeteria noise at the appropriate SNR. The algorithm-

processed condition employed these same test sentences,

each mixed with the same randomly selected noise segment

used for the unprocessed condition. Thus, the only difference

between the unprocessed and segregated conditions was

algorithm processing.

B. Algorithm description

1. IRM estimation using DNN

The IRM was employed as the training target for super-

vised speech segregation (Srinivasan et al., 2006; Narayanan

and Wang, 2013; Hummersone et al., 2014; Wang et al.,
2014). The IRM is defined as

IRM t; fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S t; fð Þ
S t; fð Þ þ N t; fð Þ

s
;

where Sðt; f Þ and Nðt; f Þ denote speech and noise energy

within a T-F unit at time t and frequency f , respectively. The

IRM is computed from the cochleagram (Wang and Brown,

2006) of the premixed speech and noise. The cochleagram

has 64 frequency channels centered from 50 to 8000 Hz and

equally spaced on the equivalent rectangular bandwidth

scale. Figure 1 shows a diagram of DNN-based IRM estima-

tion for speech segregation. IRM estimation starts with

extraction of acoustic features from noisy speech. The DNN

is then trained using these features from each speech-plus-

noise mixture, along with the IRM for that mixture. After

training, the DNN is used to estimate the IRM when pro-

vided only the speech-plus-noise mixture, which is then

applied to the noisy speech to resynthesize a segregated

speech signal. It was chosen to estimate the IRM instead of

the IBM because ratio masking leads to better speech quality

without compromising intelligibility (Wang et al., 2014; see

also Healy et al., 2015).

Specifically, the IRM was computed with a 20-ms frame

length and 10-ms frame shift. The power (1/15) compressed

cochleagram of noisy speech was used as the only acoustic

feature for IRM estimation. To incorporate temporal context,

23 frames of acoustic features were concatenated as the input

to a 5-hidden-layer DNN, which simultaneously predicted 5

frames of the IRM. Since each frame of the IRM was pre-

dicted five times, the average was taken as the final estimate.

Predicting multiple frames of training targets in this way

encodes a measure of ensemble learning and yields a
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consistent improvement in speech segregation performance

(Wang et al., 2014). The DNN had 23 � 64 units in the input

layer, 2048 rectified linear units (Nair and Hinton, 2010) in

each of the 5 hidden layers, and 5 � 64 sigmoidal units in

the output layer. Dropout with a ratio of 0.2 was used for all

hidden layers. Stochastic gradient descent with a mini-batch

size of 256 and mean square error loss function was

employed to train the DNN.

2. Large-scale training

As discussed in the Introduction, the approach employed

currently for better generalization was to perform large-scale

training to expose the DNN to a broad variety of noisy con-

ditions. A large training set was created by mixing the 560

IEEE sentences with 10 000 non-speech sounds from a

sound-effect library (Richmond Hill, Ontario, Canada,

www.sound-ideas.com). The total duration of the noises was

�125 h. The training set consisted of 640 000 mixtures, each

of which was created by mixing a randomly selected IEEE

sentence with a random segment of a randomly selected

noise at the fixed SNR of �2 dB. Both random selections

(sentence and noise) were done with replacement. The total

duration of the training mixtures was �380 h. It is worth

emphasizing that the 160 IEEE sentences and the 2 noises

used to create test stimuli (described in Sec. II A) for speech

intelligibility evaluation were not employed (seen) during

training. To facilitate discussion, the model trained with

10 000 noises is called the 10 K-noise model.

In order to demonstrate the effect of the number of noises

on generalization, a 100-noise model was trained using

the same settings described above except that 100, rather

than 10 000, non-speech environmental sounds (Columbus,

OH, www.cse.ohiostate.edu/pnl/corpus/HuCorpus.html) were

used, as in Wang and Wang (2013). Again, 640 000 mixtures

were prepared using the 560 training sentences randomly

paired with these 100 noises, so that total duration of the

training set was the same as that for the 10 K-noise model.

To put the performance of the noise-independent models

(i.e., 10 K-noise and 100-noise models) in perspective, the

same DNN-based IRM estimator was trained and tested on

the same noise type, denoted as the noise-dependent model.

This model was trained on one time portion of a noise and

tested on another portion of the same noise, with no overlap

between noise segments used for training and those used for

testing. Specifically, the two Auditec (St. Louis, MO) noises

(20-talker babble and cafeteria noise) were each 10 min

long, and the noise-dependent model was trained on the first

8 min of each noise and tested on the remaining 2 min of the

same noise. In addition to these Auditec noises, two other

noises from the NOISEX corpus (Varga and Steeneken,

1993) were used for evaluating the noise-dependent model.

These noises were factory noise and 100-talker babble noise

(denoted as “babble2”). The NOISEX noises are each 4 min

long, and the noise-dependent model was trained on the first

2 min of each noise and tested on the remaining 2 min of the

same noise. As for the other models tested currently, the 560

IEEE training sentences and an SNR of �2 dB were

employed. For each of the four noises, the training set for

the noise-dependent model consisted of 560 � 50 mixtures,

with half of the noise samples created using frequency per-

turbation (Chen et al., 2016; also see Healy et al., 2015).

C. Subjects

A first group of subjects consisted of ten bilateral

hearing-aid wearers having a sensorineural hearing loss.

These HI listeners were representative of typical audiology

patients seen at The Ohio State University Speech-

Language-Hearing Clinic. Ages ranged from 24 to 73 yr

(mean¼ 54.8 yr), and seven were female. Hearing status was

evaluated on day of test (or within one week prior to test, for

two of ten subjects) through otoscopy, tympanometry

(ANSI, 1987), and pure-tone audiometry (ANSI, 2004,

2010). Pure-tone averages (PTAs, average of audiometric

thresholds at 500, 1000, and 2000 Hz) ranged from 33 to

69 dB hearing level (HL; average 42.2). Hearing losses

therefore ranged from mild to severe and were moderate on

average. Audiograms are presented in Fig. 2, where subjects

are numbered and plotted in order of increasing PTA. Also

provided are subject numbers, ages, and genders.

A second group of subjects was composed of ten listen-

ers (nine female) having NH, as defined by audiometric

thresholds on day of test at or below 20 dB HL at octave fre-

quencies from 250 to 8000 Hz (ANSI, 2004, 2010). They

were recruited from undergraduate courses at The Ohio

State University and had ages ranging from 19 to 41 yr

(mean¼ 22.9 yr). All subjects received a monetary incentive

or course credit for participating. As in our previous work

on this topic (Healy et al., 2013; Healy et al., 2015), age

matching between HI and NH subjects was not performed

because the goal was to assess the abilities of typical (often

older) HI listeners relative to the ideal performance of

young NH listeners. However, it is noteworthy that the HI

and NH age groups ranged considerably and overlapped.

Further, the mean age of the HI listeners tested currently

was only 55 yr.

D. Procedure

Each subject heard 20 sentences in each of 8 conditions

(2 noise types� 2 SNRs� 2 processing conditions). Care

FIG. 1. (Color online) Diagram of the

proposed DNN-based supervised

speech segregation system.
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was taken to ensure that no subjects had prior exposure to

the sentence materials and no sentence was repeated in any

condition for any listener. Noise type and SNR were blocked

so that unprocessed and algorithm conditions appeared juxta-

posed in presentation order for each noise type and SNR.

The order of conditions was balanced such that half the lis-

teners heard unprocessed prior to algorithm for each noise

type and SNR (and the other half heard the opposite order),

and half of the subjects heard the babble conditions followed

by the cafeteria-noise conditions (and the other half heard

the opposite order). Sentence list-to-condition correspon-

dence was pseudo-randomized for each subject.

The total RMS level of each stimulus in each condition

was set to 65 dBA for NH listeners and 65 dBA plus

frequency-specific gains as prescribed by the NAL-R hear-

ing-aid fitting formula (Byrne and Dillon, 1986) for each

individual HI listener. The fitting procedure employed in

Healy et al. (2015) was employed, including the use of a

RANE DEQ 60 L digital equalizer (Mukilteo, WA), to pro-

vide frequency-specific gains. Echo Digital Audio Gina 3 G

digital-to-analog converters (Santa Barbara, CA) were

employed, as was a Mackie 1202-VLZ mixer (Woodinville,

WA) to adjust overall gain, and Sennheiser HD 280 Pro

headphones (Wedemark, Germany) for diotic presentation.

Calibration was performed using a Larson Davis sound-level

meter and flat-plate headphone coupler (models 824 and

AEC 101; Depew, NY). As subject-specific hearing-aid

gains were provided by the experimental apparatus, HI lis-

teners were tested with hearing aids removed.

Familiarization at the start of testing involved five IEEE

sentences not employed for formal testing, first in quiet, fol-

lowed by five sentences in the unprocessed noisy condition,

then five in the algorithm condition. Babble or cafeteria

noise was used, corresponding to whichever noise the sub-

ject was to receive first, and the SNR matched the least

favorable employed during testing. This familiarization was

repeated half way through the experiment using the other

noise type, prior to switching noise types. The HI subjects

were asked after presentation of the initial sentences if the

stimuli were comfortable in level. The overall presentation

level was reduced by 5 dB for the one subject who indicated

that the stimuli sounded loud. This individual judged this

reduced level to be comfortable. The overall presentation

level was 96 dBA or below for all subjects. The experi-

menter was seated with the subject in a double-walled audio-

metric booth, and instructed the listeners to repeat back as

much of each sentence as possible, controlled the presenta-

tion of each sentence, and scored responses.

III. RESULTS AND DISCUSSION

A. Predicted intelligibility results

Before presenting intelligibility results from HI and NH

listeners, predicted intelligibility scores using an acoustic met-

ric are provided. Specifically, the short-time objective intelli-

gibility (STOI) metric (Taal et al., 2011) was employed, as it

is a standard speech intelligibility predictor involving a com-

parison between the envelopes of segregated speech and clean

speech. STOI evaluation provides an opportunity to compare

predicted and actual intelligibility scores and an objective

benchmark for future algorithm comparisons.

Table I shows the STOI results for the unprocessed mix-

tures, the two noise-independent models, and the noise-

dependent model. The mean STOI scores were computed for

the 160 test sentences in each test-noise condition. Values

are shown for each of the test noises and for the average

FIG. 2. Pure-tone air-conduction audiometric thresholds for the listeners with sensorineural hearing impairment. Right ears are represented by circles and left

ears are represented by �’s. Also displayed are subject number, listener age in years, and gender.

TABLE I. Speech segregation results for four test noises and their average

at �2 dB SNR measured in STOI values.

Babble Cafeteria Factory Babble2 Average

Unprocessed 0.612 0.596 0.611 0.611 0.608

100-noise model 0.683 0.704 0.750 0.688 0.706

10 K-noise model 0.792 0.783 0.807 0.786 0.792

Noise-dependent model 0.833 0.770 0.802 0.762 0.792
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across noises. Apparent is that all models improved STOI

scores relative to unprocessed speech in noise. The noise-

independent model, trained with 100 noises, performed sub-

stantially poorer than that trained with 10 000 noises, even

though the two were trained using the same number of mix-

tures (640 000). Therefore, it is the increase in the amount of

distinct noise samples rather than the size of the training set

that determines generalization ability. On the other hand, the

10 K-noise model provided identical performance on average

to the noise-dependent model. This indicates that, with

10 000 noises, the noise-independent model has been

exposed to an adequate variety of noisy environments. It is

highly encouraging that the STOI scores for the noise-

independent model match those for the noise-dependent

model (see Wang et al., 2015, for additional STOI results).

Figure 3 visualizes the first 100 learned filters taken

from the first hidden layer of the 10 K-noise model. Each

panel in Fig. 3 corresponds to a hidden unit, showing the

weights coming from the input layer in two dimensions: The

abscissa represents time (23 frames) and the ordinate repre-

sents frequency (64 channels). Apparent is that the network

learns what appear to be speech-specific feature detectors.

For example, some filters resemble harmonic detectors (e.g.,

the tenth filter in the last row), while some others seem to

capture feature transitions (e.g., the fifth filter in the third

row). These speech-specific feature detectors appear to

encode fundamental characteristics of the speech signal, en-

abling the model to be noise independent.

Although the 10 K-noise model was trained on 640 000

mixtures created at �2 dB SNR, it is able to generalize to

different SNRs. To demonstrate this, a second 10 K-noise

model was trained on 640 000 new random mixtures created

at �5 dB, and both models were evaluated on both the

FIG. 3. (Color online) Visualization of 100 filters learned by the bottom hidden layer of a DNN trained on mixtures created using 10 000 noises. Each filter is

shown in two dimensions: The abscissa represents time (23 frames) and the ordinate represents frequency (64 channels).

FIG. 4. STOI predictions for a noise-independent model trained and tested

in matched and mismatched SNR conditions.

2608 J. Acoust. Soc. Am. 139 (5), May 2016 Chen et al.

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  140.254.191.70 On: Wed, 11 May 2016 13:57:18



�5 dB and �2 dB test sets. Cafeteria noise was employed.

As shown in Fig. 4, the STOI difference between the

matched and mismatched SNR conditions is negligible at

both test SNR levels. This is likely because the model had

seen sufficient local (i.e., frame level) SNR variations even

with a fixed, overall utterance-level SNR in training.

Therefore, the 10 K-noise model trained at �2 dB was used

to produce the algorithm-processed stimuli for all SNR con-

ditions employed for human-subject testing.

Figure 5 illustrates the results of using the 10 K-noise

model trained at �2 dB to perform speech segregation on a

mixture of an IEEE sentence and cafeteria noise at 0 dB

SNR. The cochleagrams of clean speech, speech-plus-noise,

and segregated speech are shown in Figs. 5(a), 5(b), and

5(e), respectively. The IRM is given in Fig. 5(c) and the esti-

mated IRM in Fig. 5(d). It is clear that the target speech is

well separated from the cafeteria noise despite that the test

noise and test SNR were not used during the training stage.

Table II lists the STOI scores for the same test condi-

tions used in the human-subjects listening tests presented in

Sec. III B. Again, the mean STOI scores were computed for

the 160 test sentences in each test-noise condition. As shown

in Table II, the 10K-noise model substantially improves

STOI values over unprocessed mixtures at all SNRs. For

each SNR, similar STOI improvement was observed for the

two noises, which was to be expected as the DNN was

trained using a large number of noises, decreasing the likeli-

hood of overfitting one specific noise.

B. Actual (human-subject) intelligibility results

Figure 6 shows intelligibility based on percentage of

keywords reported by individual human listeners in each

condition. Individual HI listeners are represented by filled

symbols and NH listeners by open symbols. Scores on

unprocessed speech in noise are represented by circles and

those on algorithm-processed speech are represented by tri-

angles. Algorithm benefit is therefore represented by

the height of the line connecting these two symbols. As in

Fig. 2, HI subjects are numbered and plotted in order of

increasing PTA.

In the babble background, all but one HI subject

received some benefit at the less favorable SNR. Benefit in

this condition was 45 percentage points or greater for four of

the ten HI listeners and was 20 points or greater for seven of

the ten HI listeners. At the more favorable babble SNR,

seven of ten HI subjects received some benefit. Benefit in

this condition was reduced in magnitude compared to the

less favorable SNR case, as most unprocessed scores were

high. However, the HI listener with the lowest unprocessed

score received a benefit of 42 percentage points. With regard

to the NH listeners in babble noise, the majority also

received some benefit (six of ten subjects at the less favor-

able SNR and seven of ten at the more favorable SNR). As

in our previous work (Healy et al., 2013; Healy et al., 2015),

the benefit for the NH listeners was smaller than that

obtained for the HI listeners.

In the cafeteria-noise background, all but one HI listener

received some benefit at the less favorable SNR. Benefit in

this condition was 20 percentage points or greater for eight

of the ten HI listeners. At the more favorable cafeteria-noise

SNR, seven of ten HI subjects received some benefit. The HI

listener with the lowest unprocessed score in this condition

received a benefit of 41 percentage points. For the NH listen-

ers in cafeteria noise, the majority also received some benefit

(nine of ten subjects at the less favorable SNR and six of ten

at the more favorable SNR).

Group-mean intelligibility scores in each condition are

displayed in Fig. 7. In babble, the average benefit from

FIG. 5. (Color online) Segregation of

an IEEE sentence (“The lake sparkled

in the red hot sun”) from cafeteria

noise at 0 dB SNR; (a) cochleagram of

the utterance in quiet; (b) cochleagram

of the utterance in noise; (c) IRM for

this mixture; (d) estimated IRM for

this mixture; and (e) cochleagram of

the segregated utterance by applying

the estimated IRM to the noisy

utterance.

TABLE II. STOI values for speech mixed with (unprocessed), and segre-

gated from (processed), babble and cafeteria noise at the SNRs indicated.

Babble noise Cafeteria noise

Unprocessed Processed Unprocessed Processed

5 dB 0.784 0.904 0.760 0.893

0 dB 0.663 0.834 0.642 0.823

�2 dB 0.612 0.792 0.596 0.783

�5 dB 0.541 0.707 0.533 0.708
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algorithm processing was 11.6 and 27.0 percentage points

for the HI listeners at 5 and 0 dB SNR, and 10.3 and 8.1 per-

centage points for the NH listeners at �2 and �5 dB SNR,

respectively. A series of planned comparisons (paired,

uncorrected t-tests) between unprocessed and processed

scores in each panel of Fig. 7 indicated that algorithm proc-

essing produced significant increases in intelligibility for

both HI and NH listeners at all babble SNRs [t(9)� 1.8,

p< 0.05].

In cafeteria noise, the average benefit from algorithm

processing was 13.3 and 22.6 percentage points for the HI

listeners at 5 and 0 dB SNR, and 4.3 and 10.3 percentage

points for the NH listeners at �2 and �5 dB SNR, respec-

tively. Planned comparisons indicated that algorithm

FIG. 6. Intelligibility of IEEE sentences based on percentage of keywords reported. The top panels represent scores in, or segregated from, babble noise, and

the bottom panels represent scores in, or segregated from, cafeteria noise, all at the SNRs indicated. Individual HI listeners are represented by filled symbols

and individual NH listeners are represented by open symbols. Scores for unprocessed speech in noise are represented by circles and scores for algorithm-

processed noisy speech are represented by triangles. Algorithm benefit is represented by the height of the line connecting these symbols.

FIG. 7. Group-mean intelligibility

scores and standard errors for HI and

NH listeners hearing unprocessed

IEEE sentences in noise and sentences

following algorithm processing. The

top panels show scores for a babble

background and the bottom panels

show scores for a cafeteria-noise back-

ground, at the SNRs indicated.
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processing produced significant increases in intelligibility

for the HI listeners at both cafeteria-noise SNRs [t(9)� 2.8,

p� 0.01], and a significant increase in intelligibility for the

NH listeners at the less favorable cafeteria-noise SNR

[t(9)¼ 5.1, p< 0.01].

IV. GENERAL DISCUSSION

It is worth emphasizing that, in the current study, two

aspects of generalization have been addressed. First, the

noise-independent algorithm trained on a large set of noises

that did not include the noises employed for testing and,

therefore, it had to generalize to entirely novel noises.

Second, the algorithm was trained at a single SNR, and it

had to generalize to untrained SNRs during the test stage.

These issues represent some of the most difficult challenges

that must be overcome for an algorithm to have direct trans-

lational significance. Obviously, the ability to generalize to

noisy environments unseen during training is a requirement

for an algorithm to be useful in real-world hearing technol-

ogy. Despite these challenging demands, the current model

produced substantial improvements in human intelligibility.

A new group of NH listeners was tested currently in the

unprocessed conditions that were identical to those in Healy

et al. (2015), which provides an opportunity for comparison.

These conditions involve the same speech materials, noise

recordings, and SNRs, just different random selections of

noise for each noisy sentence. Despite the use of different

NH subjects, scores across the two studies were within 1 per-

centage point on average across the four unprocessed condi-

tions, and no condition differed by more than 2 percentage

points across studies.

The current benefits for HI subjects observed from algo-

rithm processing are somewhat smaller than when the algo-

rithm was tested on novel segments of the same noise type

used in training (Healy et al., 2015), rather than on new

noises. However, much of this reduction in benefit can be

attributed to the high unprocessed scores produced by the HI

subjects employed in the current study. In accord with this

generally better performance on unprocessed speech in noise,

the PTAs of the current HI subjects are lower on average

(reflecting less hearing loss) by 8.3 dB relative to their coun-

terparts who participated in Healy et al. (2015). Despite the

reduction in mean benefit due to high unprocessed scores, sev-

eral aspects of the current results are particularly encouraging.

First, those HI subjects having the lowest scores on unpro-

cessed speech in noise received considerable benefit, in gen-

eral accord with that observed when novel segments of the

same noise recording were employed (Healy et al., 2015).

Second, the intelligibility scores following the current algo-

rithm processing were higher than the corresponding results in

Healy et al. (2015), particularly, for the cafeteria noise.

A third aspect that may be considered encouraging is

that no decrement in performance was observed even for

those subjects who displayed very high unprocessed speech-

in-noise scores. This ability to avoid decrements in perform-

ance when unprocessed intelligibility is high is almost as

important as the ability to improve performance when

unprocessed intelligibility is low. Even when considering

only the current conditions in which HI performance on

unprocessed speech was 85% or above (see Fig. 6), a benefit

of 1.6 percentage points was still observed. This result is

consistent with our previous results on this topic (Healy

et al., 2013; Healy et al., 2015), and suggests that the algo-

rithm did not produce distortions that might potentially

hinder better users.

A result that has been seen consistently (Healy et al.,
2013; Healy et al., 2015) is that benefit demonstrated by HI

listeners is greater than that displayed by NH listeners. This

may be understood in terms of the different noise tolerances

of the two groups. HI listeners are largely intolerant of noise

and benefit considerably from algorithmic reduction of back-

ground noise. In contrast, NH listeners perceive speech in

noise with considerable ease. Because they perform this task

effectively in the unprocessed conditions, they benefit less

from automatic speech segregation.

One result that differs from Healy et al. (2015) involves

the benefit demonstrated by the NH listeners. In the 2015

report, the NH listeners demonstrated a sizeable benefit when

listening to speech extracted from babble noise, but not for

speech extracted from cafeteria noise. In the current study, the

NH listeners received similar degrees of benefit in both noise

types. Interestingly, the STOI improvements in Table II are

also similar for both noise types. This similarity in benefit

across the two noise types may be understood in terms of the

current algorithm training procedure. Because neither of the

test noises was employed during algorithm training, the gener-

alization to them was similar and the algorithm produced sim-

ilar degrees of STOI improvement. This differs from the 2015

training procedure in which generalization was tested on

unseen segments of the same noise recording. In those 2015

conditions, it is apparent that generalization to a novel seg-

ment of cafeteria noise was more challenging algorithmically

than generalization to a novel segment of babble, reflected by

considerably larger STOI improvements for the babble noise

(see Table I in Healy et al., 2015). This is likely because the

cafeteria noise is more dynamic, with more transient bursts

than the babble noise.

Finally, human robustness to noise may have much to

do with our extensive exposure to a wide range of noisy con-

ditions. It is documented that children show elevated speech

reception thresholds relative to adults when recognizing

noisy speech (Hall et al., 2002; Johnstone and Litovsky,

2006). Musicians exhibit higher intelligibility in speech-in-

noise conditions compared to non-musicians (Parbery-Clark

et al., 2009), presumably, because of their more extensive

experience in listening to polyphonic signals. Bilingual

speakers have a deficit in speech perception in noisy condi-

tions compared to monolingual speakers, even though these

two groups show similar performance in quiet (Tabri et al.,
2011). All these effects are consistent with the idea that

extensive training (or experience) is crucial for the remark-

able noise robustness of the normal auditory system.

V. CONCLUSION

A DNN-based supervised speech segregation system

with large-scale training was presented and shown to
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generalize to untrained noises and SNR conditions. Speech

intelligibility benefits were observed for HI listeners in both

test noises and at both test SNRs. NH listeners displayed a

benefit at both test SNRs for multi-talker babble noise, and

at the less favorable SNR for the cafeteria noise. The current

results represent a stride toward using supervised speech seg-

regation in real-world environments.
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