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ABSTRACT

In supervised speech separation, deep neural networks (DNNs)
are typically employed to predict an ideal time-frequency (T-
F) mask in order to remove background interference. How-
ever, the performance of DNNs is frequently degraded for
untrained noises and speakers. Inspired by recent research on
dilated convolutions for context aggregation, we propose a
novel convolutional neural network (CNN) to deal with noise-
and speaker-independent speech separation. The proposed
model incorporates dilated convolutions, gating mechanism-
s and residual learning. We find that the proposed model
consistently outperforms a state-of-the-art long short-term
memory (LSTM) based model in terms of objective speech
intelligibility and quality. Additionally, the proposed CNN is
more computationally efficient than the LSTM model.

Index Terms— dilated convolutions, residual learning,
gated linear units, phase-sensitive mask, speech separation.

1. INTRODUCTION

Speech separation aims to separate target speech from back-
ground interference [1]. Inspired by the concept of time-
frequency masking in computational auditory scene analysis
(CASA) [2], speech separation is formulated as a supervised
learning problem in recent years, where a mapping from noisy
acoustic features to a T-F mask is learned by a deep neural
network [3].

The ideal ratio mask (IRM) [4], which suppresses noise
energy within each T-F unit, is frequently used as the training
target in supervised speech separation. Alternatively, one can
estimate the phase-sensitive mask (PSM) [5], which yields a
higher signal-to-noise ratio (SNR). It is defined by

PSM(t, f) =
|S(t, f)|
|Y (t, f)|

cos θ (1)

where |S(t, f)| and |Y (t, f)| denote spectral magnitudes of
clean speech and noisy speech within a T-F unit at time frame
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t and frequency channel f , respectively. θ represents the dif-
ference between the clean speech phase and the noisy speech
phase within the T-F unit. In this study, we use the PSM as
the training target to perform supervised speech separation.

For supervised speech separation, contextual information
can facilitate mask estimation. A window of consecutive time
frames is typically utilized to provide temporal contexts for
mask estimation at each time frame. Contextual informa-
tion, however, may be insufficiently leveraged given a fixed-
length context window. A recent approach [6] utilizes long-
term contexts by treating supervised speech separation as an
utterance-to-utterance mapping. In [6], Chen et al. proposed
a recurrent neural network (RNN) with four stacked hidden
LSTM layers to deal with speaker- and noise-independent
speech separation. With a large number of training speakers,
the LSTM model generalizes well to untrained speakers and
noises, and significantly outperforms a DNN based model.

In convolutional neural networks, contextual information
is augmented typically through the expansion of the recep-
tive fields. One way to achieve this goal is to increase the
network depth, which decreases computational efficiency and
typically results in vanishing gradients [1]. Another way is to
enlarge the kernel size, which likewise raises computational
burden and training time. Previous CNN based methods [7]
[8] [9] for speech separation do not capture long-term tempo-
ral dependencies due to their limited receptive fields. Dilat-
ed convolutions (or atrous convolutions) were first proposed
for multi-scale context aggregation in [10]. They can signifi-
cantly expand receptive fields while maintaining the network
depth and the kernel size. Motivated by recent research [10]
[11] [12] on dilated convolutions, we propose a novel gat-
ed residual network (GRN) with dilated convolutions to deal
with speech separation. We find that the proposed GRN leads
to consistently better performance and higher computational
efficiency than the LSTM model in [6]. In addition, our pro-
posed GRN substantially outperforms previous convolutional
networks for speech separation.

The rest of this paper is organized as follows. We gives a
detailed description of our proposed model in Section 2. The
experimental setup and results are presented in Section 3. We



conclude in Section 4.

2. ALGORITHM DESCRIPTION

2.1. Dilated convolutions

Dilated convolutions were originally developed in the algo-
rithme à trous, an algorithm for wavelet decomposition [13].
Formally, a 2-D discrete convolution operator ∗, which con-
volves signal F with kernel k of size (2m + 1) × (2m + 1),
is defined as

(F ∗ k)(p) =
∑

s+t=p

F (s)k(t) (2)

where t ∈ [−m,m]2 ∩ Z. A generalized version of the oper-
ator ∗, which is denoted by ∗r, can be defined as

(F ∗r k)(p) =
∑

s+rt=p

F (s)k(t) (3)

where r denotes a dilation rate. Thus, we refer to ∗r as an
r-dilated convolution. Note that the common convolutions
can be regarded as 1-dilated convolutions. Analogously, a
1-D r-dilated convolution can be defined as (F ∗r k)(p) =∑

s+rt=p F (s)k(t), t ∈ [−m,m]∩Z. With kernels of size 3,
the receptive fields of conventional convolutions and dilated
convolutions are illustrated in Fig. 1.

Fig. 1. Left: a 1-D CNN (r = 1) with three conventional
convolutional layers. Right: a 1-D CNN with three dilated
convolutional layers, of which the dilation rates r are 1, 2
and 4, respectively. We treat the blue unit in the top layer as
the unit of interest, and the rest of the blue units indicate its
receptive fields in each layer.

Mathematically, the receptive field size in conventional
1-D convolutions is linearly correlated with the layer depth,
while the receptive field size in dilated 1-D convolutions is
exponentially correlated with the layer depth if the kernels are
applied with exponentially increasing dilation rates as shown
in Fig. 1.

2.1.1. Time-dilated convolutions

Sercu et al. [12] developed so-called time-dilated convolu-
tions by using an asymmetric version of dilated spatial con-
volutions (or 2-D convolutions) with dilation in the time di-
rection but not in the frequency direction. In this study, we use
the 1-D version of time-dilated convolutions, where dilation
is applied to temporal convolutions (or 1-D convolutions).

2.1.2. Frequency-dilated convolutions

To aggregate contextual information over the frequency di-
mension, we create kernels of size 1 × 3 for dilated convo-
lutions over the frequency dimension, where the kernels are
placed along the frequency direction. For convenience, we
call them frequency-dilated convolutions.

2.2. Gated linear units

Gating mechanisms potentially facilitate modeling more com-
plex interactions by controlling the information flow. LSTM-
style gating mechanisms are applied to convolutions in [14]:

y = tanh(x ∗W1 + b1)⊙ σ(x ∗W2 + b2)

= tanh(v1)⊙ σ(v2)
(4)

where v1 = x ∗ W1 + b1 and v2 = x ∗ W2 + b2. W’s
and b’s represent kernels and biases, respectively. σ denotes
sigmoid function. ∗ and ⊙ denote convolution operation and
element-wise multiplication, respectively. The gradient of the
LSTM-style gating is

∇[tanh(v1)⊙ σ(v2)] = tanh′(v1)∇v1 ⊙ σ(v2)

+σ′(v2)∇v2 ⊙ tanh(v1)
(5)

where tanh′(v1), σ
′(v2) ∈ (0, 1). Typically, the vanishing

gradient problem arises as the network depth increases, while
it becomes even more severe with such gating due to the
downscaling factors tanh′(v1) and σ′(v2). To tackle this
problem, Dauphin et al. [15] introduced gated linear units
(GLUs):

y = (x ∗W1 + b1)⊙ σ(x ∗W2 + b2)

= v1 ⊙ σ(v2)
(6)

The gradient of the GLUs

∇[v1 ⊙ σ(v2)] = ∇v1 ⊙ σ(v2) + σ′(v2)∇v2 ⊙ v1 (7)

includes a path ∇v1 ⊙ σ(v2) without downscaling, allowing
for the gradient flow through layers while retaining the non-
linear capabilities.

2.3. Residual learning

He et al. [16] developed a deep residual learning framework
via introducing the skip connections, which dramatically alle-
viate the vanishing gradient problem. Fig. 2 (top) illustrates a
1-D version of the bottleneck residual block in [16]. The bot-
tleneck design decreases the network depth while maintaining
the performance. By incorporating time-dilated convolution-
s and GLUs into the common bottleneck residual block, we
introduce a novel residual block shown in Fig. 2 (bottom),
where the kernel size in the middle layer is increased to 7 to
further expand the receptive fields.



Fig. 2. Top: a common bottleneck residual block with 3 con-
volutional layers. Bottom: our proposed residual block.

2.4. Network architecture

Once we treat supervised speech separation as an utterance-
to-utterance mapping, the T-F representation of an utterance
is fed into the network at once. In this study, we use 161-
dimensional short-time Fourier transform (STFT) magnitude
spectra as the network inputs with shape T ×F , where T and
F denote the numbers of time frames and frequency channels
in the STFT magnitude spectra, respectively. Considering the
potential imbalance between T and F (= 161), it may be bet-
ter to systematically aggregate the contexts in the frequency
direction and the time direction, separately.

Our proposed 62-layer network is constructed as follows.
We first stack four frequency-dilated convolutional layers
with rectified linear activations [17] to capture the contextual
information along the frequency direction. Subsequently, a
1-D convolutional layer with 128 size-1 kernels is employed
for dimension reduction. To model temporal dependencies,
we construct a bunch of residual blocks (see Fig. 2) to ap-
ply time-dilated convolutions. We assign the dilation rates
following a sawtooth wave-like fashion [18]: a set of resid-
ual blocks are grouped together to form the “rising edge” of
the wave which has exponentially increasing dilation rates,
and two succeeding groups repeat the same pattern. Once
the residual blocks are stacked together, two successive con-
volutional layers with rectified linear activations and linear
activations are used to perform cross-channel pooling and
dimension reduction. Finally, an output layer with sigmoid
nonlinearity is utilized for mask estimation. Note that we
apply zero-padding to the 1-D convolutions but not to the 2-D
convolutions. Moreover, a variant of batch normalization [19]
is adopted, where the moving averages are used to perform
the normalization during both training and inference.

A detailed description of our proposed network archi-
tecture is given by Table 1. The input sizes and the output
sizes of layers are specified in featureMaps × timeSteps ×
frequencyChannels format for 2-D convolutions, while the

Table 1. Architecture of our proposed 62-layer GRN. Resid-
ual blocks are shown in brackets (see also Fig. 2).

layer name input size layer hyperparameters output size
expand dims T × 161 - 1×T × 161

conv2d 1 1×T × 161 1 × 3, (1, 1), 16 16×T×159
conv2d 2 16×T×159 1 × 3, (1, 1), 16 16×T×157
conv2d 3 16×T×157 1 × 3, (1, 2), 32 32×T×153
conv2d 4 32×T×153 1 × 3, (1, 4), 32 32×T×145
reshape 32×T×145 - T × 4640

conv1d 1 T × 4640 1, 1, 128 T × 128

conv1d 2 T × 64

 1, 1, 64
7, 1, 64
1, 1, 256

 1, 1, 64
7, 2, 64
1, 1, 256

 1, 1, 64
7, 4, 64
1, 1, 256

 1, 1, 64
7, 8, 64
1, 1, 256

 1, 1, 64
7, 16, 64
1, 1, 256

 1, 1, 64
7, 32, 64
1, 1, 256





×3 T × 256

conv1d 3 T × 256 1, 1, 256 T × 256
conv1d 4 T × 256 1, 1, 128 T × 128
conv1d 5 T × 128 1, 1, 161 T × 161

sizes are given in timeSteps × featureMaps format for 1-
D convolutions. The layer hyperparameters are shown in
(kernelSize, dilationRate, outChannels) format.

3. EXPERIMENTS

3.1. Experimental setup

Our experiments are conducted on the WSJ0 SI-84 dataset
[20] including 7138 utterances from 83 speakers. Among
these speakers, 6 speakers (i.e., 3 males and 3 females) are
treated as untrained speakers. Hence, we train the mod-
els with the 77 remaining speakers. To investigate noise-
independent speech separation, we utilize two challenging
noises (babble and cafeteria) from the Auditec CD (available
at http://www.auditec.com) for our test sets, and 10 000 noises
from a sound effect library (available at https://www.sound-
ideas.com) for our training set.

Two test sets are created for each noise using 6 untrained
speakers and 6 trained speakers (3 males and 3 females), re-
spectively. Specifically, we use random cuts from a noise to
mix with the test utterances at -5 dB and -2 dB. One test set
includes 150 mixtures created from 25 × 6 utterances of 6
trained speakers, while the other includes 150 mixtures creat-
ed from 25 × 6 utterances of 6 untrained speakers. To create
a training mixture, we mix a randomly drawn training utter-
ance with a random cut from the 10 000 training noises at an
SNR level randomly chosen from {-5, -4, -3, -2, -1, 0} dB.
The training set comprises 320 000 mixtures in our experi-
ments and the total duration is about 500 hours. Note that all
test utterances are excluded from the training set.



Table 2. STOI and PESQ scores on trained speakers.
metrics STOI (in %) PESQ

SNR -5 dB -2 dB -5 dB -2 dB
noises Avg. babble cafeteria Avg. babble cafeteria Avg. babble cafeteria Avg. babble cafeteria

unprocessed 58.0 58.8 57.3 65.9 66.4 65.5 1.57 1.63 1.52 1.74 1.78 1.71
LSTM 75.2 76.4 74.1 82.4 83.2 81.6 2.07 2.05 2.09 2.39 2.37 2.41
GRN 76.8 77.6 75.9 83.1 83.4 82.7 2.14 2.10 2.17 2.43 2.38 2.48

Table 3. STOI and PESQ scores on untrained speakers.
metrics STOI (in %) PESQ

SNR -5 dB -2 dB -5 dB -2 dB
noises Avg. babble cafeteria Avg. babble cafeteria Avg. babble cafeteria Avg. babble cafeteria

unprocessed 58.0 58.5 57.5 65.1 65.5 64.7 1.50 1.56 1.44 1.67 1.71 1.63
LSTM 73.1 73.0 73.2 81.0 81.1 80.9 1.96 1.89 2.04 2.30 2.26 2.34
GRN 75.6 75.8 75.3 82.5 82.5 82.4 2.05 1.99 2.11 2.35 2.30 2.40

Fig. 3. Comparison of the LSTM and GRN in terms of STOI
improvements (left) and computational efficiency (right).

In our experiments, we evaluate the proposed GRN and
the LSTM developed in [6]. For both models, the network
inputs are normalized to zero mean and unit variance. The
PSMs are clipped to between 0 and 1, to fit the range of the
sigmoid function. During training, Adam [21] serves as the
optimizer to minimize the mean square error (MSE) objec-
tive function with a learning rate of 0.001. Both models are
trained with a mini-batch size of 16. Within a mini-batch, al-
l samples are zero-padded to have the same number of time
steps as the longest sample does. For the LSTM, we use a
feature window of 11 frames (5 to the left and 5 to the right)
to estimate one frame of the PSM.

3.2. Experimental results

In this study, we use short-time objective intelligibility (S-
TOI) [22] and perceptual evaluation of speech quality (PESQ)
[23] as the metrics to evaluate objective speech intelligibility
and quality, respectively. The STOI score ranges from 0 to 1,
and the PESQ score is between -0.5 and 4.5.

Table 2 and Table 3 list the STOI and PESQ scores of
unprocessed and processed signals on trained and untrained
speakers, respectively. Boldface numbers highlight the best
result in each case. The STOI improvements over the unpro-
cessed signals are shown in Fig. 3 (left). Overall, the proposed
GRN consistently outperforms the LSTM in terms of both S-
TOI and PESQ scores. On the trained speakers, the proposed
GRN yields around 1.6% STOI improvements compared with

the LSTM on average. For example, the STOI score improves
by 1.2% on the babble noise at -5 dB compared to the LST-
M. As Table 3 shows, the proposed GRN generalizes better
to untrained speakers than the LSTM does. In the most chal-
lenging scenario, where the utterances from untrained speak-
ers are mixed with the babble noise at -5 dB, the GRN leads
to a 2.8% STOI improvement over the LSTM.

Previous CNNs [7] [8] [9] for speech separation yield rel-
atively small improvements compared to DNNs, while the L-
STM model significantly outperforms a DNN model with a
large number of training speakers [6]. Further performance
improvements are achieved by our proposed GRN.

For the utterance-to-utterance mapping, the proposed
GRN potentially benefits from its large receptive fields upon
the inputs. This allows the GRN to capture long-term de-
pendencies, which are critical to speaker characterization for
the sake of speech separation. The LSTM learns temporal
dynamics of speech as well, while it insufficiently utilizes
the frequency information. The GRN, however, leverages
contexts over both the frequency axis and the time axis,
which enables the network to model more complex temporal
dependencies.

Another advantage of the GRN is its higher computational
efficiency due to the use of shared weights in convolutions.
Fig. 3 (right) presents the numbers of trainable parameters in
the LSTM and the GRN. Even though the GRN is far deeper
than the LSTM, it is more economical than the latter with
regard to computational cost.

4. CONCLUSION

In this study, we have proposed a gated residual network
with dilated convolutions, named GRN, to deal with noise-
independent speech separation. The evaluation results in-
dicate that the proposed GRN consistently outperforms a
four-layer LSTM model on both trained and untrained s-
peakers. Moreover, we have shown that the GRN is more
computationally efficient than the LSTM. We believe that the
proposed model lays a sound foundation for investigations
towards CNNs for supervised speech separation.
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