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Gated Residual Networks with Dilated Convolutions
for Monaural Speech Enhancement
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Abstract—For supervised speech enhancement, contextual in-
formation is important for accurate mask estimation or spectral
mapping. However, commonly used deep neural networks (DNNs)
are limited in capturing temporal contexts. To leverage long-term
contexts for tracking a target speaker, we treat speech enhance-
ment as a sequence-to-sequence mapping, and present a novel
convolutional neural network (CNN) architecture for monaural
speech enhancement. The key idea is to systematically aggregate
contexts through dilated convolutions, which significantly expand
receptive fields. The CNN model additionally incorporates gating
mechanisms and residual learning. Our experimental results
suggest that the proposed model generalizes well to untrained
noises and untrained speakers. It consistently outperforms a
DNN, a unidirectional long short-term memory (LSTM) model
and a bidirectional LSTM model in terms of objective speech
intelligibility and quality metrics. Moreover, the proposed model
has far fewer parameters than DNN and LSTM models.

Index Terms—dilated convolutions, residual learning, gated
linear units, sequence-to-sequence mapping, speech enhancement.

I. INTRODUCTION

MONAURAL speech separation is the task of separat-
ing target speech from a single-microphone recording,

which may include nonspeech noise, interfering speech and
room reverberation. It has a wide range of real-world ap-
plications such as robust automatic speech recognition and
hearing aids design. In this study, we focus on monaural
speech separation from background noise, which is also known
as speech enhancement.

Monaural speech separation has been extensively studied in
the speech processing community for decades. In recent years,
speech separation has been formulated as supervised learning,
inspired by the concept of time-frequency (T-F) masking in
computational auditory scene analysis (CASA) [40]. The ideal
binary mask (IBM) [39], which assigns 1 to a T-F unit if the
target energy within the unit exceeds the interference energy
and 0 otherwise, is the first training target used in supervised
speech separation. More recent training targets include the
ideal ratio mask (IRM) [43] and the phase-sensitive mask
(PSM) [7], and mapping-based targets corresponding to the
magnitude or power spectra of target speech [48].
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Over the last several years, supervised speech separation
has greatly benefited from the use of deep learning. Wang and
Wang [44] first introduced deep neural networks to address
speech separation, where DNNs are trained as binary classi-
fiers to predict the IBM in order to remove background noise.
A more recent study has demonstrated that ratio masking
yields better speech quality than binary masking [43]. Subse-
quently, Xu et al. [48] employed a DNN to learn the mapping
function from the log power spectrum of noisy speech to that
of clean speech. Their experimental results indicate that the
trained DNN leads to higher perceptual evaluation of speech
quality (PESQ) [30] scores than a traditional enhancement
method.

The last decade has witnessed the tremendous success of
CNNs in the fields of computer vision and natural language
processing. A typical CNN architecture comprises a cascade of
convolutional layers, subsampling layers and fully connected
layers. Although CNNs have been used for speech separation
in recent years, none of them achieve substantial performance
improvement over a DNN. In [19], a convolutional maxout
neural network (CMNN) is employed to estimate the IRM for
speech enhancement. Experimental results show that CMNN
yields comparable PESQ gains compared to DNN-separated
speech. Another study [26] uses a convolutional encoder-
decoder network (CED) to learn a spectral mapping. CED
exhibits similar denoising performance compared with a DNN
and an RNN, but its model size is much smaller. Moreover,
a similar encoder-decoder architecture is developed in [21].
Other studies [9], [38], [24], [1], [14], [15] using CNN for
mask estimation or spectral mapping also achieve small per-
formance improvements over a DNN. Recently, Fu et al. [11]
have proposed a fully convolutional network (FCN) for raw
waveform-based speech enhancement. In contrast to masking
and mapping based approaches that reconstruct enhanced
speech using noisy phase, FCN performs speech enhancement
in an end-to-end manner, and allows for a straightforward
mapping from a noisy waveform to the corresponding clean
waveform. An extended study [10] follows the same frame-
work to construct an utterance-based enhancement model and
uses short-time objective intelligibility (STOI) [33] as the
objective function during training. Their experimental results
show 4% to 10% STOI gains over noisy speech. Another
attempt is complex spectrogram enhancement using a CNN,
i.e. estimating clean real and imaginary spectrograms from
noisy ones [8].

Generalization to untrained conditions is crucial for any
supervised learning task. In the case of speech enhancement,
three important aspects of generalization are speaker, noise
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and signal-to-noise ratio (SNR). A simple yet effective method
to deal with noise generalization and SNR generalization is
to include many different noise types and SNR levels in a
training set [3], [43]. Similarly, to tackle speaker generaliza-
tion would be to train with many speakers. However, recent
studies [2], [23] suggest that the capacity of a feedforward
DNN in modeling a large number of speakers is limited. For
a DNN, a window of consecutive time frames is typically
utilized to provide temporal contexts for mask estimation or
spectral mapping. Without the ability to leverage longer term
information, a DNN tends to treat segments of training utter-
ances as if they come from a single speaker [2]. When exposed
to a large number of training speakers, DNN tends to mistake
background noise segments for target speech, especially when
background noise includes speech components (e.g., babble
noise). As suggested in [2], it would be better to formulate
speech enhancement as a sequence-to-sequence mapping in
order to leverage long-term contexts. With such a formula-
tion, Chen et al. [2] proposed a recurrent neural network
(RNN) with LSTM layers to address speaker generalization.
After training with many speakers and noises, the LSTM
model works well on untrained speakers, and significantly
outperforms a DNN based model in terms of STOI. Earlier
works [46], [45] also showed that RNNs are more effective
than DNNs for speech enhancement.

In a preliminary study, we recently developed a novel gated
residual network (GRN) with dilated convolutions to address
monaural speech enhancement [34]. The proposed GRN was
inspired by recent success of dilated convolutions in image
segmentation [4], [49], [50]. Compared with conventional con-
volutions, dilated convolutions expand receptive fields without
loss of resolution while retaining the network depth and the
kernel size. A receptive field is a region in the input space that
affects a particular high-level feature. With the formulation of
speech enhancement as a sequence-to-sequence mapping, large
receptive fields of the GRN amount to long-term contexts.
Motivated by recent works [6], [36] on gated convolutional
networks, gated linear units (GLUs) are additionally incorpo-
rated into the proposed network. Compared with the LSTM
model in [2], the GRN shows better generalization capability
for untrained speakers at different SNR levels [34]. In this
study, we further develop the GRN architecture to elevate the
enhancement performance. The present work mainly makes
the following four changes in the approach.

First, the outputs of all the residual blocks are summated to
yield high-level features which are then fed into a prediction
module to produce an estimate. Such skip connections preserve
and integrate the knowledge learned by all the stacked residual
blocks. Second, we redesign the frequency-dilated module
to learn local spatial patterns in the T-F representation of
speech along both time and frequency directions, rather than
only along the frequency direction in [34]. Third, we replace
rectified linear units (ReLUs) [13] by exponential linear units
(ELUs) [5], which have been demonstrated to lead to not
only faster convergence but also better generalization. Fourth,
we evaluate the GRN with different training targets. Our
experimental results suggest that the GRN achieves better
performance with a mapping-based target than with a masking-

based target.
Our experiments compare the proposed GRN with a DNN,

a unidirectional LSTM model and a bidirectional LSTM
(BLSTM) model. All the models are evaluated on the WSJ0
SI-84 dataset [28]. We find that the proposed GRN generalizes
very well to untrained noises and untrained speakers, and
it produces consistently higher STOI and PESQ scores than
the DNN and the RNNs. Moreover, the number of learnable
parameters of the GRN is one order of magnitude lower than
that of the DNN and the RNNs.

The rest of this paper is organized as follows. We introduce
the monaural speech enhancement problem in Section II.
In Section III, we describe our proposed model in detail.
Experimental setup is provided in Section IV. In Section V, we
present and discuss experimental results. Section VI concludes
this paper.

II. MONAURAL SPEECH ENHANCEMENT

A. Problem Formulation

Given a single-microphone mixture y(t), the goal of monau-
ral speech enhancement is to estimate target speech s(t). In
this study, we focus on the scenario where target speech is
corrupted by an additive background noise. Hence, a noisy
mixture can be modeled as

y(t) = s(t) + n(t) (1)

where t indexes a time sample and n(t) denotes the back-
ground noise. Supervised speech enhancement can be formu-
lated as the process that maps from acoustic features of a
noisy mixture y(t) to a T-F mask or a spectral representation of
target speech s(t). Specifically, the input acoustic features and
the corresponding desired outputs are passed into a learning
machine for training. During inference, the estimated outputs
and noisy mixture phases are fed into a resynthesizer to
reconstruct the time-domain speech waveform.

B. Training Targets

In this study, we assume that all signals are sampled at
16 kHz. A 20-ms Hamming window is employed to segment
a signal into a set of time frames, where adjacent time frames
are overlapped by 50%. We use 161-dimensional short-time
Fourier transform (STFT) magnitude spectra as input features,
which are calculated from a 320-point STFT (16 kHz×20 ms).
To demonstrate the effectiveness of the proposed model, we
use three representative training targets, i.e. two masking-
based targets and a mapping-based target.

1) Ideal Ratio Mask: The ideal ratio mask (IRM) is a
widely used training target in supervised speech separation,
which can be regarded as a soft version of the IBM [43]:

IRM(m, f) =

√
S(m, f)2

S(m, f)2 +N(m, f)2
(2)

where S(m, f)2 and N(m, f)2 represent speech energy and
noise energy within a T-F unit at time frame m and frequency
channel f , respectively. Fig. 1(a) depicts an example of the
IRM. In masking-based approaches for speech separation, the
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(a) IRM (b) PSM

(c) TMS

Fig. 1. (Color Online). Illustration of the IRM, the PSM and the TMS for a
WSJ0 utterance mixed with a babble noise at -5 dB SNR.

estimated T-F mask is element-wise multiplied by the mag-
nitude spectrum of noisy speech to produce that of enhanced
speech, which is subsequently used, along with noisy phase,
to reconstruct the time-domain waveform of enhanced speech
with an overlap-add method.

2) Phase-Sensitive Mask: The phase sensitive mask (PSM)
incorporates the phase information into a T-F mask, and is
defined on the STFT magnitudes of clean speech and noisy
speech:

PSM(m, f) =
|S(m, f)|
|Y (m, f)|

cos θ (3)

where |S(m, f)| and |Y (m, f)| denote spectral magnitudes of
clean speech and noisy speech within a T-F unit, respectively,
and θ represents the difference between the clean speech phase
and the noisy speech phase within the unit. With the inclusion
of the phase difference, the PSM has been demonstrated to
yield a higher signal-to-distortion ratio (SDR) as compared to
the IRM. Fig. 1(b) shows an example of the PSM [7]. In this
study, the PSM is clipped to between 0 and 1, to fit the range
of the sigmoid function.

3) Target Magnitude Spectrum: The target magnitude spec-
trum (TMS) of clean speech, i.e. |S(m, f)|, is a standard
training target in mapping-based approaches [25], [16]. An ex-
ample of the TMS is illustrated in Fig. 1(c). In mapping-based
approaches, the estimated magnitude spectrum is combined
with noisy phase to produce the enhanced speech waveform.

III. SYSTEM DESCRIPTION

A. Dilated Convolutions

In convolutional neural networks, contextual information is
augmented typically through the expansion of the receptive
fields. One way to achieve this goal is to increase the network
depth, which decreases computational efficiency and typically
results in vanishing gradients [41]. Another way is to enlarge

r = 1

r = 1

r = 1

(a) Conventional convolutions

r = 1

r = 2

r = 4

(b) Dilated convolutions

Fig. 2. (Color Online). Illustration of conventional convolutions and dilated
convolutions. (a) a 1-D CNN with three conventional convolutional layers. (b)
a 1-D CNN with three dilated convolutional layers, where the dilation rates
r are 1, 2 and 4, respectively. The blue unit in the top layer is treated as the
unit of interest, and the rest of the blue units indicate its receptive fields in
each layer.

the kernel size, which likewise raises computational burden
and training time. To solve this problem effectively, Yu and
Koltun [49] first proposed dilated convolutions for multi-scale
context aggregation in image segmentation. Their work is
based upon the fact that dilated convolutions can exponentially
expand receptive fields without losing resolution or cover-
age. The experimental results indicate their context module
increases the accuracy of segmentation systems.

Formally, a 2-D discrete convolution operator ∗, which
convolves signal F with kernel k of size (2m+1)×(2m+1),
is defined as

(F ∗ k)(p) =
∑

s+t=p

F (s)k(t) (4)

where p, s ∈ Z2 and t ∈ [−m,m]2 ∩ Z2. Here Z denotes the
set of integers. A dilated version of the operator ∗, which is
denoted by ∗r, can be defined as

(F ∗r k)(p) =
∑

s+rt=p

F (s)k(t) (5)

where r denotes a dilation rate. Therefore, we refer to ∗r as
an r-dilated convolution. Note that conventional convolutions
can be regarded as 1-dilated convolutions. Analogously, a 1-
D r-dilated convolution can be defined as (F ∗r k)(p) =∑

s+rt=p F (s)k(t), where p, s ∈ Z and t ∈ [−m,m] ∩ Z.
Fig. 2 illustrates conventional and dilated convolutions.

As shown in Fig. 2, the scale of the receptive fields in
conventional convolutions increases linearly with the layer
depth, whereas the scale of the receptive fields in dilated
convolutions increases exponentially with the layer depth if
the kernels are applied with exponentially increasing dilation
rates.
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1) Time-Dilated Convolutions: Sercu and Goel [32] devel-
oped so-called time-dilated convolutions for speech recog-
nition by using an asymmetric version of dilated spatial
convolutions (or 2-D convolutions) with dilation in the time
direction but not in the frequency direction. In this study, we
use a 1-D version of time-dilated convolutions, where dilation
is applied to temporal convolutions (or 1-D convolutions).

2) Frequency-Dilated Convolutions: To aggregate contex-
tual information over the frequency dimension, we create
dilated spatial convolutions with kernels of size 5 × 5. The
dilation is applied to the frequency direction but not in the
time direction, and we refer to such convolutions as frequency-
dilated convolutions. Note that, unlike the frequency-dilated
convolutions in [34], current frequency-dilated convolutions
capture contexts over both time and frequency directions.

B. Gated Linear Units

Gating mechanisms were first designed to facilitate the
information flow over time in an RNN [18]. Long short-term
memory in RNN, allows for long-term memory by introducing
a memory cell controlled by an input gate and a forget
gate [12]. These gates alleviate the vanishing or exploding
gradient problem arising when the recurrent connections are
trained with backpropagation through time [47], [27]. Van den
Oord et al. [36] developed a multiplicative unit in the form of
LSTM gates for convolutional modeling of images:

y = tanh(x ∗W1 + b1)� σ(x ∗W2 + b2)

= tanh(v1)� σ(v2)
(6)

where v1 = x ∗W1 + b1 and v2 = x ∗W2 + b2. W’s
and b’s denote kernels and biases, respectively, σ represents
sigmoid function, and � denotes element-wise multiplication.
Their work suggests LSTM-style gating potentially facilitates
more complex interactions by controlling the information flow
in CNNs. The gradient of LSTM-style gating is

∇[tanh(v1)� σ(v2)] = tanh′(v1)∇v1 � σ(v2)

+σ′(v2)∇v2 � tanh(v1)
(7)

where tanh′(v1), σ
′(v2) ∈ (0, 1), and the prime symbol

denotes differentiation. Typically, the vanishing gradient prob-
lem arises as the network depth increases, and it becomes
more severe with such gating due to the downscaling factors
tanh′(v1) and σ′(v2). To tackle this problem, Dauphin et
al. [6] introduced gated linear units (GLUs):

y = (x ∗W1 + b1)� σ(x ∗W2 + b2)

= v1 � σ(v2)
(8)

The gradient of the GLUs

∇[v1 � σ(v2)] = ∇v1 � σ(v2) + σ′(v2)∇v2 � v1 (9)

includes a path ∇v1 � σ(v2) without downscaling (value
compression), allowing for the gradient flow through layers
while retaining nonlinearity.

1-D Conv, 64, kernel size = 3

+

256-d

1-D Conv, 64, kernel size = 1

1-D Conv, 256, kernel size = 1

ReLU

ReLU

ReLU

(a) A common bottleneck residual block

r-dilated 1-D Conv, 64, kernel size = 7

+

256-d

1-D Conv, 64, kernel size = 1

1-D Conv, 256, kernel size = 1

×

r-dilated 1-D Conv, 64, kernel size = 7

ELU ELU

σ

ELU

(b) The proposed residual block

Fig. 3. Illustration of a common bottleneck residual block and our proposed
residual block. Note that σ denotes a sigmoid function and ‘Conv’ convolu-
tion.

C. Residual Learning

He et al. [17] developed a deep residual learning framework
by introducing the identity shortcuts, which dramatically alle-
viate the vanishing gradient problem. Fig. 3(a) depicts a 1-D
version of the bottleneck residual block in [17]. The bottle-
neck design decreases the network depth while maintaining
the performance. By incorporating time-dilated convolutions
and GLUs into the common bottleneck residual block, we
introduce a novel residual block shown in Fig. 3(b), where
the kernel size in the middle layer is increased to 7 to further
expand receptive fields. In addition, we replace ReLUs with
ELUs to accelerate learning and improve the generalization
performance.

D. Network Architecture

Our proposed GRN includes three modules, i.e. frequency-
dilated module, time-dilated module and prediction module.
Fig. 4 depicts the network architecture. A more detailed
description of the architecture is given in Table I. In the table,
the input sizes and the output sizes of layers are specified in
the featureMaps × timeSteps × frequencyChannels format for
2-D convolutions, and in the timeSteps× featureMaps format
for 1-D convolutions. The layer hyperparameters are shown
in the (kernelSize, dilationRate, outputChannels) format. Note
that we apply zero-padding to all the convolutions. Batch
normalization [20] is adopted in the time-dilated module and
the prediction module.
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Noisy Magnitude Spectrum

Dilated Conv, SigmoidDilated Conv, Linear

×

+

ELU

…

…

5×5 Dilated Conv, 16, ELU

5×5 Dilated Conv, 16, ELU

5×5 Dilated Conv, 32, ELU

5×5 Dilated Conv, 32, ELU

Size-1 Conv, ELU

Size-1 Conv, Linear

Dilated Conv, SigmoidDilated Conv, Linear

×

+

ELU

Size-1 Conv, ELU

Size-1 Conv, Linear

…

+

Size-1 Conv, ELU

Size-1 Conv, Linear

Size-1 Conv,
Softplus or Sigmoid

Enhanced Magnitude Spectrum
or

Estimated T-F Mask

Skip connections

Identity shortcut

Frequency-dilated
module

Time-dilated
module

Prediction
module

Fig. 4. Network architecture of the proposed GRN, which comprises
three modules: frequency-dilated module, time-dilated module and prediction
module. More details are provided in Table I.

1) Frequency-Dilated Module: The frequency-dilated mod-
ule takes the STFT magnitude spectrum of a noisy utterance as
input. The frequency-dilated module contains four stacked 2-
D convolutional layers, which are used to capture local spatial
patterns in the magnitude spectrum. The dilation is applied
to the layers along the frequency direction with rates of 1, 1,
2 and 4, respectively. The features learned by the frequency-
dilated module are then reshaped to a proper dimensionality
to fit 1-D convolutions in the next module.

2) Time-Dilated Module: To model temporal dependencies,
a number of residual blocks (see Fig. 3(b)) are stacked to
perform time-dilated convolutions. This amounts to the time-
dilated module that takes the outputs of the frequency-dilated
module. We assign the dilation rates following a sawtooth
wave-like fashion [42]: a set of residual blocks is grouped to
form the “rising edge” of the wave which has exponentially
increasing dilation rates, and two succeeding groups repeat the
same pattern, e.g. 1, 2, 4, 8, 16, 32; 1, 2, 4, 8, 16, 32; 1, 2, 4, 8,
16, 32. As suggested in [49], such residual block groups enable
exponential expansion of the receptive field while retaining the

TABLE I
ARCHITECTURE OF THE PROPOSED GRN. RESIDUAL BLOCKS ARE SHOWN

IN PARENTHESES (SEE ALSO FIG. 3(B)).

layer name input size layer hyperparameters output size
expand dims T × 161 - 1 × T × 161

conv2d 1 1 × T × 161 5 × 5, (1, 1), 16 16×T × 161
conv2d 2 16×T × 161 5 × 5, (1, 1), 16 16×T × 161
conv2d 3 16×T × 161 5 × 5, (1, 2), 32 32×T × 161

conv2d 4 32×T × 161 5 × 5, (1, 4), 32 32×T × 161
reshape 32×T × 161 - T × 5152

conv1d 1 T × 5152 1, 1, 128 T × 128

conv1d 2 T × 64

 1, 1, 64
7, 1, 64
1, 1, 256

 1, 1, 64
7, 2, 64
1, 1, 256

 1, 1, 64
7, 4, 64
1, 1, 256

 1, 1, 64
7, 8, 64
1, 1, 256

 1, 1, 64
7, 16, 64
1, 1, 256

 1, 1, 64
7, 32, 64
1, 1, 256





× 3 T × 256

conv1d 3 T × 256 1, 1, 256 T × 256
conv1d 4 T × 256 1, 1, 128 T × 128

conv1d 5 T × 128 1, 1, 161 T × 161

input resolution, which allows for aggregation of long-term
contexts. Unlike the previous version of the GRN in [34], we
use a type of skip connections (see Fig. 4) designed in the
WaveNet [35]. In contrast to the time-dilated module in [34],
such skip connections give the next module access to the
outputs of all the residual blocks in the time-dilated module.
An advantage is that such skip connections facilitate training
by improving the flow of information and gradients throughout
the network.

3) Prediction Module: After the frequency-dilated module
and the time-dilated module systematically aggregate the con-
texts in the inputs, we employ a prediction module to perform
mask estimation or spectral mapping. The prediction module
comprises three convolutional layers with size-1 kernels. Of
the three layers, two successive layers with ELUs and lin-
ear activations are responsible for cross-channel pooling and
dimension reduction. The two layers are then followed by an
output layer. There are two options for nonlinear activations in
the output layer, depending on the training target. If we use the
IRM or the PSM as the training target, a sigmoid nonlinearity
is applied to the output layer. If we use the TMS, a softplus
activation [13] is adopted, and it is a smooth approximation to
the ReLU function and can constrain the output of a network
to always be positive.

The motivation for applying dilation in the time and the fre-
quency directions separately is two-fold. First, the frequency-
dilated module extracts local features, which are used by the
time-dilated module to model temporal dependencies. This
configuration is similar to [1], in which a vertical convolution
layer captures local timbre information and a horizontal convo-
lution layer subsequently models temporal evolution. Second,
the time dimension is larger than the frequency dimension. In
order to sufficiently leverage the contexts in both directions,
it may be better to separately aggregate the contexts in the
frequency direction and the time direction.
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TABLE II
COMPARISONS BETWEEN MODELS AND TRAINING TARGETS IN TERMS OF STOI AND PESQ ON TRAINED SPEAKERS.

metrics STOI (in %) PESQ
test SNR -5 dB 0 dB 5 dB -5 dB 0 dB 5 dB

noises BAB CAF Avg. BAB CAF Avg. BAB CAF Avg. BAB CAF Avg. BAB CAF Avg. BAB CAF Avg.
unprocessed 58.77 57.29 58.03 71.19 70.27 70.73 82.56 82.13 82.35 1.62 1.52 1.57 1.88 1.82 1.85 2.15 2.15 2.15
DNN + IRM 66.56 67.91 67.24 79.77 80.29 80.03 88.17 88.25 88.21 1.70 1.77 1.74 2.11 2.22 2.17 2.47 2.59 2.53

LSTM + IRM 77.11 74.52 75.76 86.47 84.95 85.71 91.62 91.07 91.35 2.00 2.03 2.02 2.43 2.46 2.45 2.79 2.81 2.80
BLSTM + IRM 77.57 74.22 75.90 86.53 85.10 85.82 91.84 91.23 91.54 2.01 2.02 2.02 2.45 2.47 2.46 2.80 2.83 2.82

GRN + IRM 79.35 77.80 78.58 87.36 86.67 87.02 92.24 91.99 92.12 2.10 2.17 2.14 2.53 2.60 2.57 2.86 2.94 2.90
DNN + PSM 66.27 67.74 67.01 79.62 80.09 79.86 87.94 87.83 87.89 1.67 1.83 1.75 2.13 2.28 2.21 2.53 2.65 2.59

LSTM + PSM 75.87 74.03 74.95 86.31 85.29 85.80 92.03 91.54 91.79 2.03 2.10 2.07 2.55 2.60 2.58 2.94 2.99 2.97
BLSTM + PSM 77.31 74.41 75.86 87.36 85.86 86.61 92.49 91.74 92.12 2.08 2.10 2.09 2.62 2.62 2.62 3.00 3.02 3.01

GRN + PSM 79.54 77.80 78.67 87.81 87.05 87.43 92.97 92.68 92.83 2.17 2.25 2.21 2.65 2.72 2.69 3.01 3.08 3.05
DNN + TMS 69.61 70.76 70.19 82.77 82.54 82.66 89.40 89.03 89.22 1.81 1.88 1.85 2.31 2.35 2.33 2.67 2.69 2.68

LSTM + TMS 79.27 76.79 78.03 88.57 87.11 87.84 92.80 92.14 92.47 2.15 2.15 2.15 2.63 2.60 2.62 2.97 2.94 2.96
BLSTM + TMS 79.47 76.90 78.19 88.63 87.13 87.88 93.01 92.19 92.60 2.16 2.14 2.15 2.64 2.61 2.63 2.98 2.95 2.97

GRN + TMS 81.64 79.88 80.76 89.44 88.03 88.74 93.59 92.81 93.20 2.26 2.27 2.27 2.68 2.67 2.68 3.01 3.00 3.01

TABLE III
COMPARISONS BETWEEN MODELS AND TRAINING TARGETS IN TERMS OF STOI AND PESQ ON UNTRAINED SPEAKERS.

metrics STOI (in %) PESQ
test SNR -5 dB 0 dB 5 dB -5 dB 0 dB 5 dB

noises BAB CAF Avg. BAB CAF Avg. BAB CAF Avg. BAB CAF Avg. BAB CAF Avg. BAB CAF Avg.
unprocessed 58.52 57.45 57.99 70.25 69.70 69.98 81.35 81.02 81.19 1.56 1.44 1.50 1.81 1.77 1.79 2.12 2.12 2.12
DNN + IRM 65.03 67.63 66.33 78.72 80.05 79.39 87.64 88.13 87.89 1.60 1.71 1.66 2.06 2.16 2.11 2.45 2.56 2.51

LSTM + IRM 74.54 73.04 73.79 84.88 83.89 84.39 90.84 90.53 90.69 1.85 1.92 1.89 2.33 2.36 2.35 2.70 2.73 2.72
BLSTM + IRM 75.23 74.12 74.68 85.05 84.44 84.75 90.96 90.79 90.88 1.88 1.96 1.92 2.35 2.40 2.38 2.71 2.76 2.74

GRN + IRM 77.32 76.91 77.12 86.17 86.19 86.18 91.62 91.63 91.63 1.98 2.07 2.03 2.44 2.52 2.48 2.80 2.86 2.83
DNN + PSM 64.79 67.59 66.19 78.56 80.02 79.29 87.46 87.92 87.69 1.60 1.77 1.69 2.09 2.24 2.17 2.52 2.64 2.58

LSTM + PSM 74.12 73.34 73.73 84.90 84.66 84.78 91.28 91.18 91.23 1.91 2.04 1.98 2.45 2.53 2.49 2.86 2.92 2.89
BLSTM + PSM 74.67 73.65 74.16 85.64 84.86 85.25 91.55 91.24 91.40 1.91 2.04 1.98 2.49 2.53 2.51 2.89 2.92 2.91

GRN + PSM 77.45 77.41 77.41 86.70 86.62 86.66 92.15 92.13 92.14 2.06 2.19 2.13 2.57 2.65 2.61 2.95 3.02 2.99
DNN + TMS 68.13 70.78 69.46 81.99 82.93 82.46 89.43 89.58 89.51 1.71 1.85 2.28 2.25 2.31 2.28 2.64 2.66 2.65

LSTM + TMS 76.38 75.76 76.07 87.37 86.54 86.96 92.64 92.08 92.36 1.99 2.08 2.04 2.53 2.52 2.53 2.90 2.87 2.89
BLSTM + TMS 76.98 76.23 76.61 87.73 86.79 87.26 92.80 92.14 92.47 2.01 2.09 2.05 2.53 2.53 2.53 2.91 2.88 2.90

GRN + TMS 80.18 79.42 79.80 88.92 88.04 88.48 93.40 92.88 93.14 2.16 2.23 2.20 2.63 2.62 2.63 2.97 2.96 2.97

IV. EXPERIMENTAL SETUP

A. Data Preparation

In our experiments, we use the WSJ0 SI-84 training set
which includes 7138 utterances from 83 speakers (42 males
and 41 females). Of these speakers, we set aside 6 speakers
(3 males and 3 females) as untrained speakers, and train the
models with the 77 remaining speakers. To investigate noise
generalization of the models, we utilize four test noises which
include a speech-shaped noise (SSN), a factory noise from
the NOISEX-92 dataset [37], and two highly nonstationary
noises (babble and cafeteria) from an Auditec CD (available at
http://www.auditec.com). For training, we use 10,000 noises
from a sound effect library (available at https://www.sound-
ideas.com) and the total duration is about 126 hours. Note
that the four test noises are different from the training noises.

Of the utterances from the 77 training speakers, we hold
out 150 randomly selected utterances to create a validation
set with the babble noise from the NOISEX-92 dataset. Our
training set comprises 320,000 mixtures with the total duration
of about 500 hours. To create a training mixture, we mix a
randomly drawn training utterance with a random cut from
the 10,000 training noises at an SNR level that is randomly
chosen from {-5, -4, -3, -2, -1, 0} dB.

To investigate speaker generalization of the models, we
create two test sets for each noise using 6 untrained speakers
and 6 trained speakers (3 males and 3 females). One test set
contains 150 mixtures created from 25 × 6 utterances of 6
trained speakers, while the other contains 150 mixtures created
from 25× 6 utterances of 6 untrained speakers. We use three
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Fig. 5. An LSTM baseline with a feature window of 11 frames (5 to each
side). At each time step, the 11 input frames are concatenated into a feature
vector.

SNR levels for test mixtures, i.e. -5, 0 and 5 dB. Note that all
test utterances are excluded from the training set.

B. Baselines and Training Details

In our experiments, we compare our proposed GRN with
three other baselines, i.e. a feedforward DNN, a unidirectional
LSTM model employed in [2], and a bidirectional LSTM
model. For the DNN, the LSTM and the BLSTM, a feature
window of 11 frames (5 to each side) is employed to estimate
one frame of the target. From the input layer to the output
layer, the DNN has 11× 161, 2048, 2048, 2048, 2048, 2048,
and 161 units, respectively; the LSTM has 11 × 161, 1024,
1024, 1024, 1024, and 161 units, respectively; the BLSTM
has 11× 161, 512, 512, 512, 512, and 161 units, respectively.
Note that the features are expanded by the 11-frame feature
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Fig. 6. Comparisons of DNN, LSTM, BLSTM and GRN in terms of STOI
improvements over unprocessed mixtures for the six untrained speakers on
four different noises at -5 dB SNR.

window at each time frame for the LSTM and the BLSTM,
as shown in Fig. 5.

We train the models with the Adam optimizer [22]. The
initial learning rate is set to 0.001 and halved every five
epochs. We use mean squared error (MSE) as the objective
function. The proposed GRN, the LSTM and the BLSTM are
trained with a minibatch size of 16 at the utterance level.
Within a minibatch, all samples are zero-padded to have
the same number of time steps as the longest sample. The
feedforward DNN is trained with a minibatch size of 1024
at the frame level. The best models are selected by cross
validation.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Speaker and Noise Generalization

Tables II and III present comprehensive evaluations for
different models and training targets on babble (‘BAB’) noise
and cafeteria (‘CAF’) noise. The numbers represent the av-
erages over the test samples in each case. Table II lists
STOI and PESQ scores for trained speakers, and Table III
lists those for untrained speakers. The best scores in each
case are highlighted by boldface. Overall, regardless of the
training target of choice, the proposed GRN yields significant
improvements over the unprocessed mixtures in terms of STOI
and PESQ scores. In the -5 dB SNR case, for example, the
GRN with the IRM improves the STOI score by 20.55%
and the PESQ score by 0.57 as compared to the unprocessed
mixtures for trained speakers. Among the three training targets,
the TMS produces the best performance in both metrics. The
IRM and the PSM yield similar STOI scores, while the PSM
produces slightly higher PESQ scores than the IRM. Let us
analyze speaker generalization of the GRN using the TMS
target. For the six trained speakers, the GRN achieves 22.73%
STOI improvements and 0.70 PESQ improvements over the
unprocessed mixtures at -5 dB. Compared to the trained
speakers, the GRN achieves similar STOI improvements (i.e.
21.81%) and PESQ improvements (i.e. 0.70) for the six
untrained speakers. This reveals that, with a large number of
training speakers, the GRN generalizes very well to untrained
speakers.

TABLE IV
p-VALUES FROM ONE-TAILED TWO-PAIRED KS SIGNIFICANCE TESTS FOR

TRAINED SPEAKERS.

metrics STOI PESQ
test SNR -5 dB 0 dB 5 dB -5 dB 0 dB 5 dB

IRM p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 p<0.05
PSM p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 p<0.05
TMS p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 p<0.05

TABLE V
p-VALUES FROM ONE-TAILED TWO-PAIRED KS SIGNIFICANCE TESTS FOR

UNTRAINED SPEAKERS.

metrics STOI PESQ
test SNR -5 dB 0 dB 5 dB -5 dB 0 dB 5 dB

IRM p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 p<0.05
PSM p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 p<0.05
TMS p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 p<0.05

Fig. 6 shows the performance of different models using the
TMS in terms of STOI improvements for untrained speakers
and different noises. Four noises (i.e. babble, cafeteria, factory
and SSN) are used to evaluate the models. As shown in Fig. 6,
the GRN consistently provides significant STOI improvements
for all the noises, which implies the GRN model is noise-
independent.

B. Model Comparisons

We first compare the DNN with the other three models.
As shown in Tables II and III, the DNN achieves about
8.2% to 12.2% STOI improvements and 0.16 to 0.27 PESQ
improvements over the unprocessed mixtures. Going from
DNN to LSTM substantially improves the two metrics. This
result is consistent with the findings in [2]. Even with a large
context window (i.e. 11 frames), the DNN is unable to track
a target speaker when exposed to a wide range of training
speakers. In contrast, the other three models are capable
of characterizing a target speaker by learning the long-term
dependencies.

Unlike the feedforward DNN, the two RNNs (i.e. LSTM and
BLSTM) model the changes over time by allowing recurrent
connections. The RNNs treat speech separation as a sequence-
to-sequence mapping, which is more advantageous for speaker
characterization. It is worth noting that BLSTM splits the
units into two directions, one for future direction (forward
states) and another for past direction (backward states) [31].
Unlike LSTM that utilizes only the future information within a
context window, BLSTM can access all future time frames via
the backward states. As shown in Tables II and III, however,
similar performance is obtained by LSTM and BLSTM, while
BLSTM generalizes slightly better to untrained speakers.

Our proposed GRN consistently outperforms LSTM and
BLSTM in all conditions. Take, for example the -5 dB SNR
case where the TMS is used as the training target. On trained
speakers, the proposed GRN improves STOI by 2.57% and
PESQ by 0.12 over BLSTM. On untrained speakers, the pro-
posed GRN improves STOI by 3.19% and PESQ by 0.15 over
BLSTM. For higher SNRs, the GRN yields smaller improve-
ments over LSTM and BLSTM. To assess the significance
of the STOI and PESQ differences between the GRN and
the BLSTM, we conduct one-tailed two-paired Kolmogorov-
Smirnov (KS) tests. The one-tailed KS tests reject the null
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TABLE VI
COMPARISONS BETWEEN FCN AND GRN IN TERMS OF STOI AND PESQ

ON TRAINED SPEAKERS. THE IRM IS USED AS THE TRAINING TARGET.

metrics STOI (in %) PESQ
test SNR -5 dB 0 dB 5 dB -5 dB 0 dB 5 dB

FCN 71.88 82.81 89.80 1.89 2.30 2.66
GRN 78.58 87.02 92.12 2.14 2.57 2.90

TABLE VII
COMPARISONS BETWEEN FCN AND GRN IN TERMS OF STOI AND PESQ
ON UNTRAINED SPEAKERS. THE IRM IS USED AS THE TRAINING TARGET.

metrics STOI (in %) PESQ
test SNR -5 dB 0 dB 5 dB -5 dB 0 dB 5 dB

FCN 70.83 82.23 89.48 1.80 2.24 2.62
GRN 77.12 86.18 91.63 2.03 2.48 2.83

hypothesis for a p-value lower than 0.05, which indicates that
the GRN group of samples is significantly higher than the
BLSTM group of samples. Tables IV and V show the p-values
for the KS tests on trained speakers and untrained speakers,
respectively, where each evaluation score was averaged over
the two test noises (babble and cafeteria) before the KS
tests are conducted. In all cases, the KS tests indicate the
significance of STOI and PESQ improvements of GRN over
BLSTM.

Fig. 7 compares the training and test MSEs of different mod-
els over training epochs. We observe that the GRN converges
faster and achieves a lower training MSE and a lower test MSE
than the other three models. In Fig. 8, we illustrate the STFT
magnitudes of an enhanced speech utterance using the DNN,
LSTM, BLSTM and GRN. The magnitudes are plotted on a
log scale. We can see that the DNN-separated speech is still
quite noisy. The separated speech using the other three models
preserves the spectrotemporal modulation patterns of the clean
speech, which are important for speech intelligibility [29]. In
addition, the BLSTM separated speech and the GRN separated
speech have sharper spectral transitions and less distortion
compared to the LSTM separated speech.

Finally, we compare the GRN with a fully convolutional
network without dilation, gating, and skip connections. The
FCN is constructed by simplifying the GRN architecture.
Specifically, each dilated convolution is replaced by a corre-
sponding conventional convolution and each residual block by
one convolutional layer with a kernel size of 7. Moreover, the
skip connections are removed. The remaining hyperparameters
are unaltered. This amounts to a 26-layer FCN, which has
about 1.29 million trainable parameters. Tables VI and VII
present STOI and PESQ scores for trained speakers and
untrained speakers, respectively. The scores are averaged over
the two test noises (babble and cafeteria). As shown in the
tables, the GRN substantially outperforms the FCN in all
scenarios, which reveals the contributions of dilation, gating
and skip connections.

C. Impact of Time-Dilated Submodules

Before we investigate the impact of time-dilated submodules
in the GRN architecture, we first analyze the receptive field
size of a unit in the top layer. Note that we only calculate
the receptive field size for the time direction. In our proposed
GRN architecture, the frequency-dilated module consists of
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Fig. 7. (Color Online). Mean squared errors over training epochs for DNN,
LSTM, BLSTM and GRN on the training set and the test set. All models are
evaluated with a test set of six untrained speakers on the untrained babble
noise.
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Fig. 8. (Color Online). STFT magnitudes (log scale) of a separated speech
using different models. We use TMS as the training target. The unprocessed
mixture is generated by mixing an utterance of an untrained speaker with
babble noise at -5 dB.

four convolutional layers with 5× 5 kernels and dilation rates
1, 1, 2 and 4, which leads to a receptive field size of 1+ (5−
1)× (1+1+2+4) = 33. The time-dilated module comprises
three submodules, each of which amounts to an additional
receptive field size of (7− 1)× (1 + 2 + 4 + 8 + 16 + 32) =
378. In the prediction module, all three convolutional layers
use size-1 kernels, which do not expand the receptive field.
Therefore, the total receptive field size of a unit in the top
layer is 33 + 378 × 3 = 1167. In other words, a unit in the
top layer is affected by at most 1167 time frames of input
features. Since we use a 10-ms frame shift, 1167 time frames
are equivalent to 1167 × 0.01 = 11.67 s (5.835 s to the past
and 5.835 s to the future). Thus the proposed GRN leverages
a large amount of future information like BLSTM.

We now evaluate the GRNs with different numbers of time-
dilated submodules with the six untrained speakers and the
untrained babble noise. Specifically, we evaluate the GRNs
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Fig. 10. Parameter efficiency comparison of DNN, LSTM, BLSTM and GRN.
We compare the number of trainable parameters in different models.

with 0, 1, 2 and 3 time-dilated submodules, which correspond
to receptive field sizes of 33, 441, 789 and 1167, respectively.
Fig. 9 compares the impact of the time-dilated submodules on
the enhancement performance in terms of STOI improvements.
We can see that the performance of the GRN is improved with
more time-dilated submodules as more contextual information
is leveraged.

D. Parameter Efficiency

Our proposed GRN provides higher parameter efficiency
compared with the DNN and the RNNs due to the use of
shared weights in convolution operations. Fig. 10 presents
the numbers of learnable parameters in the four different
models. The GRN has much fewer parameters than the other
three models even though the GRN is far deeper than them.
Note that we can adjust the parameter efficiency of the GRN
simply by altering the number of the time-dilated submodules
as discussed in Section V-C. Since computational resources
are sometimes limited for real-world applications, it may be
essential to achieve an optimal trade-off between enhancement
performance and parameter efficiency of the model.

VI. CONCLUDING REMARKS

In this study, we have proposed a GRN model for monaural
speech enhancement. The proposed model incorporates dilated
convolutions, gating mechanisms and residual learning. With
the formulation of speech enhancement as a sequence-to-
sequence mapping, the GRN benefits from its large receptive
fields upon the input T-F representation. This allows the GRN
to model long-term dependencies that are critical to speaker
characterization for speaker-independent enhancement. RNNs

likewise learn temporal dynamics of speech, but they uti-
lize frequency information inadequately. The proposed GRN,
however, systematically aggregates contexts along both the
frequency and the time directions. Our experimental results
demonstrate that the GRN generalizes very well to untrained
speakers and untrained noises. It consistently outperforms
a DNN, a unidirectional LSTM model and a bidirectional
LSTM model in terms of STOI and PESQ for both trained
and untrained speakers. Another advantage of the GRN is its
parameter efficiency due to the shared weights in convolutions.
The GRN has one order of magnitude lower number of
trainable parameters than that of an RNN with four hidden
LSTM layers. This reveals the potential of CNN models for
real-world speech enhancement applications in which compu-
tational efficiency is essential. We believe that the design of
the CNN architecture presented in this paper is an important
step towards practical monaural speech enhancement.

It should be noted that the proposed model utilizes a large
amount of future information like BLSTM. Such a model
cannot be used for real-time processing, which is a demand
of many real-world applications. In future studies, we would
devote efforts to the design of new CNN architectures that are
causal or have a low latency, to meet the need of real-time
speech enhancement.
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